ravirajoshi commited on
Commit
7859dcc
·
1 Parent(s): ed0e05c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +372 -0
README.md ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: wav2vec2-large-xls-r-300m-hindi
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # wav2vec2-large-xls-r-300m-hindi
14
+
15
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.5955
18
+ - Wer: 0.3045
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0003
38
+ - train_batch_size: 4
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - gradient_accumulation_steps: 2
42
+ - total_train_batch_size: 8
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 500
46
+ - num_epochs: 10
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
52
+ |:-------------:|:-----:|:------:|:---------------:|:------:|
53
+ | 5.4053 | 0.03 | 400 | 2.2251 | 1.0264 |
54
+ | 1.3788 | 0.06 | 800 | 1.0338 | 0.7092 |
55
+ | 1.0018 | 0.1 | 1200 | 0.8684 | 0.6351 |
56
+ | 0.884 | 0.13 | 1600 | 0.8097 | 0.6019 |
57
+ | 0.813 | 0.16 | 2000 | 0.8227 | 0.6085 |
58
+ | 0.7817 | 0.19 | 2400 | 0.7232 | 0.5525 |
59
+ | 0.7433 | 0.22 | 2800 | 0.6841 | 0.5308 |
60
+ | 0.6916 | 0.26 | 3200 | 0.6492 | 0.5001 |
61
+ | 0.6777 | 0.29 | 3600 | 0.6471 | 0.4999 |
62
+ | 0.6452 | 0.32 | 4000 | 0.6085 | 0.4814 |
63
+ | 0.6284 | 0.35 | 4400 | 0.6026 | 0.4876 |
64
+ | 0.6163 | 0.38 | 4800 | 0.6024 | 0.4726 |
65
+ | 0.6007 | 0.42 | 5200 | 0.6340 | 0.4876 |
66
+ | 0.6 | 0.45 | 5600 | 0.6138 | 0.4797 |
67
+ | 0.5815 | 0.48 | 6000 | 0.5601 | 0.4442 |
68
+ | 0.5725 | 0.51 | 6400 | 0.5800 | 0.4594 |
69
+ | 0.5689 | 0.54 | 6800 | 0.5417 | 0.4388 |
70
+ | 0.5501 | 0.58 | 7200 | 0.5575 | 0.4378 |
71
+ | 0.5385 | 0.61 | 7600 | 0.5715 | 0.4521 |
72
+ | 0.5258 | 0.64 | 8000 | 0.5427 | 0.4256 |
73
+ | 0.5397 | 0.67 | 8400 | 0.5649 | 0.4434 |
74
+ | 0.5163 | 0.7 | 8800 | 0.5392 | 0.4252 |
75
+ | 0.4974 | 0.74 | 9200 | 0.5708 | 0.4514 |
76
+ | 0.4837 | 0.77 | 9600 | 0.5402 | 0.4195 |
77
+ | 0.4693 | 0.8 | 10000 | 0.5337 | 0.4276 |
78
+ | 0.4883 | 0.83 | 10400 | 0.5290 | 0.4233 |
79
+ | 0.4728 | 0.86 | 10800 | 0.5320 | 0.4227 |
80
+ | 0.4623 | 0.9 | 11200 | 0.5334 | 0.4206 |
81
+ | 0.4602 | 0.93 | 11600 | 0.5399 | 0.4217 |
82
+ | 0.4514 | 0.96 | 12000 | 0.5154 | 0.4009 |
83
+ | 0.4476 | 0.99 | 12400 | 0.5263 | 0.4080 |
84
+ | 0.3954 | 1.02 | 12800 | 0.4993 | 0.3853 |
85
+ | 0.3895 | 1.06 | 13200 | 0.5132 | 0.3871 |
86
+ | 0.3936 | 1.09 | 13600 | 0.5060 | 0.3900 |
87
+ | 0.3974 | 1.12 | 14000 | 0.5048 | 0.3882 |
88
+ | 0.3832 | 1.15 | 14400 | 0.4929 | 0.3886 |
89
+ | 0.362 | 1.18 | 14800 | 0.5122 | 0.3895 |
90
+ | 0.3695 | 1.22 | 15200 | 0.4893 | 0.3781 |
91
+ | 0.3655 | 1.25 | 15600 | 0.4900 | 0.3898 |
92
+ | 0.3586 | 1.28 | 16000 | 0.4896 | 0.3709 |
93
+ | 0.3488 | 1.31 | 16400 | 0.5070 | 0.3875 |
94
+ | 0.3595 | 1.34 | 16800 | 0.5200 | 0.3962 |
95
+ | 0.3571 | 1.38 | 17200 | 0.4817 | 0.3684 |
96
+ | 0.3425 | 1.41 | 17600 | 0.4821 | 0.3855 |
97
+ | 0.3442 | 1.44 | 18000 | 0.4827 | 0.3699 |
98
+ | 0.3446 | 1.47 | 18400 | 0.5155 | 0.3798 |
99
+ | 0.3352 | 1.51 | 18800 | 0.5182 | 0.3944 |
100
+ | 0.3411 | 1.54 | 19200 | 0.5143 | 0.3855 |
101
+ | 0.3211 | 1.57 | 19600 | 0.5002 | 0.3751 |
102
+ | 0.3293 | 1.6 | 20000 | 0.4915 | 0.3777 |
103
+ | 0.3169 | 1.63 | 20400 | 0.4994 | 0.3779 |
104
+ | 0.3246 | 1.67 | 20800 | 0.5033 | 0.3824 |
105
+ | 0.3117 | 1.7 | 21200 | 0.4979 | 0.3712 |
106
+ | 0.3025 | 1.73 | 21600 | 0.4887 | 0.3775 |
107
+ | 0.301 | 1.76 | 22000 | 0.5133 | 0.3689 |
108
+ | 0.31 | 1.79 | 22400 | 0.4959 | 0.3697 |
109
+ | 0.3101 | 1.83 | 22800 | 0.5031 | 0.3678 |
110
+ | 0.2916 | 1.86 | 23200 | 0.5017 | 0.3710 |
111
+ | 0.2964 | 1.89 | 23600 | 0.4842 | 0.3646 |
112
+ | 0.2844 | 1.92 | 24000 | 0.4997 | 0.3644 |
113
+ | 0.2929 | 1.95 | 24400 | 0.5112 | 0.3694 |
114
+ | 0.2756 | 1.99 | 24800 | 0.4959 | 0.3604 |
115
+ | 0.2614 | 2.02 | 25200 | 0.5023 | 0.3648 |
116
+ | 0.2581 | 2.05 | 25600 | 0.5008 | 0.3583 |
117
+ | 0.242 | 2.08 | 26000 | 0.4909 | 0.3575 |
118
+ | 0.2489 | 2.11 | 26400 | 0.5431 | 0.3621 |
119
+ | 0.2443 | 2.15 | 26800 | 0.4960 | 0.3623 |
120
+ | 0.2437 | 2.18 | 27200 | 0.5146 | 0.3667 |
121
+ | 0.2541 | 2.21 | 27600 | 0.5124 | 0.3561 |
122
+ | 0.2471 | 2.24 | 28000 | 0.4983 | 0.3582 |
123
+ | 0.2426 | 2.27 | 28400 | 0.4947 | 0.3497 |
124
+ | 0.2417 | 2.31 | 28800 | 0.4961 | 0.3672 |
125
+ | 0.2442 | 2.34 | 29200 | 0.4956 | 0.3576 |
126
+ | 0.2363 | 2.37 | 29600 | 0.4990 | 0.3571 |
127
+ | 0.2348 | 2.4 | 30000 | 0.5279 | 0.3627 |
128
+ | 0.2405 | 2.43 | 30400 | 0.4884 | 0.3545 |
129
+ | 0.226 | 2.47 | 30800 | 0.5158 | 0.3592 |
130
+ | 0.2188 | 2.5 | 31200 | 0.5155 | 0.3567 |
131
+ | 0.2239 | 2.53 | 31600 | 0.5005 | 0.3511 |
132
+ | 0.2227 | 2.56 | 32000 | 0.5000 | 0.3506 |
133
+ | 0.2133 | 2.59 | 32400 | 0.5116 | 0.3798 |
134
+ | 0.2255 | 2.63 | 32800 | 0.4888 | 0.3533 |
135
+ | 0.2111 | 2.66 | 33200 | 0.5086 | 0.3588 |
136
+ | 0.222 | 2.69 | 33600 | 0.4928 | 0.3496 |
137
+ | 0.2236 | 2.72 | 34000 | 0.5007 | 0.3562 |
138
+ | 0.1998 | 2.75 | 34400 | 0.4957 | 0.3539 |
139
+ | 0.2053 | 2.79 | 34800 | 0.4973 | 0.3546 |
140
+ | 0.2132 | 2.82 | 35200 | 0.4860 | 0.3492 |
141
+ | 0.2121 | 2.85 | 35600 | 0.4971 | 0.3448 |
142
+ | 0.2021 | 2.88 | 36000 | 0.5010 | 0.3544 |
143
+ | 0.1966 | 2.91 | 36400 | 0.5097 | 0.3575 |
144
+ | 0.2083 | 2.95 | 36800 | 0.4961 | 0.3561 |
145
+ | 0.2002 | 2.98 | 37200 | 0.5016 | 0.3572 |
146
+ | 0.1903 | 3.01 | 37600 | 0.5008 | 0.3436 |
147
+ | 0.1751 | 3.04 | 38000 | 0.5137 | 0.3455 |
148
+ | 0.1673 | 3.07 | 38400 | 0.5068 | 0.3465 |
149
+ | 0.1825 | 3.11 | 38800 | 0.5188 | 0.3569 |
150
+ | 0.1713 | 3.14 | 39200 | 0.5197 | 0.3491 |
151
+ | 0.1777 | 3.17 | 39600 | 0.5275 | 0.3468 |
152
+ | 0.1724 | 3.2 | 40000 | 0.5060 | 0.3426 |
153
+ | 0.1684 | 3.23 | 40400 | 0.5152 | 0.3424 |
154
+ | 0.1725 | 3.27 | 40800 | 0.5278 | 0.3547 |
155
+ | 0.1666 | 3.3 | 41200 | 0.5073 | 0.3473 |
156
+ | 0.1695 | 3.33 | 41600 | 0.5549 | 0.3612 |
157
+ | 0.1675 | 3.36 | 42000 | 0.5019 | 0.3427 |
158
+ | 0.1732 | 3.39 | 42400 | 0.5182 | 0.3494 |
159
+ | 0.1604 | 3.43 | 42800 | 0.5227 | 0.3422 |
160
+ | 0.1589 | 3.46 | 43200 | 0.5017 | 0.3488 |
161
+ | 0.1605 | 3.49 | 43600 | 0.5429 | 0.3534 |
162
+ | 0.1698 | 3.52 | 44000 | 0.5198 | 0.3527 |
163
+ | 0.1615 | 3.55 | 44400 | 0.5044 | 0.3412 |
164
+ | 0.1561 | 3.59 | 44800 | 0.5136 | 0.3413 |
165
+ | 0.157 | 3.62 | 45200 | 0.5015 | 0.3430 |
166
+ | 0.1516 | 3.65 | 45600 | 0.4967 | 0.3340 |
167
+ | 0.1488 | 3.68 | 46000 | 0.5142 | 0.3430 |
168
+ | 0.1477 | 3.71 | 46400 | 0.5108 | 0.3495 |
169
+ | 0.1479 | 3.75 | 46800 | 0.5075 | 0.3451 |
170
+ | 0.1527 | 3.78 | 47200 | 0.5106 | 0.3394 |
171
+ | 0.1538 | 3.81 | 47600 | 0.5264 | 0.3501 |
172
+ | 0.1499 | 3.84 | 48000 | 0.5118 | 0.3321 |
173
+ | 0.1452 | 3.87 | 48400 | 0.5233 | 0.3366 |
174
+ | 0.1523 | 3.91 | 48800 | 0.5275 | 0.3461 |
175
+ | 0.1435 | 3.94 | 49200 | 0.5218 | 0.3429 |
176
+ | 0.1436 | 3.97 | 49600 | 0.5226 | 0.3445 |
177
+ | 0.1472 | 4.0 | 50000 | 0.5045 | 0.3376 |
178
+ | 0.1219 | 4.03 | 50400 | 0.5508 | 0.3429 |
179
+ | 0.1275 | 4.07 | 50800 | 0.5467 | 0.3457 |
180
+ | 0.1274 | 4.1 | 51200 | 0.5263 | 0.3406 |
181
+ | 0.1246 | 4.13 | 51600 | 0.5287 | 0.3378 |
182
+ | 0.1275 | 4.16 | 52000 | 0.5397 | 0.3394 |
183
+ | 0.1306 | 4.2 | 52400 | 0.5148 | 0.3374 |
184
+ | 0.1283 | 4.23 | 52800 | 0.5137 | 0.3411 |
185
+ | 0.1264 | 4.26 | 53200 | 0.5464 | 0.3461 |
186
+ | 0.1335 | 4.29 | 53600 | 0.5390 | 0.3485 |
187
+ | 0.1241 | 4.32 | 54000 | 0.5129 | 0.3439 |
188
+ | 0.1276 | 4.36 | 54400 | 0.5101 | 0.3437 |
189
+ | 0.116 | 4.39 | 54800 | 0.5142 | 0.3327 |
190
+ | 0.1256 | 4.42 | 55200 | 0.5112 | 0.3381 |
191
+ | 0.1231 | 4.45 | 55600 | 0.5243 | 0.3377 |
192
+ | 0.1164 | 4.48 | 56000 | 0.5401 | 0.3399 |
193
+ | 0.1213 | 4.52 | 56400 | 0.5300 | 0.3365 |
194
+ | 0.1179 | 4.55 | 56800 | 0.5321 | 0.3374 |
195
+ | 0.1171 | 4.58 | 57200 | 0.5213 | 0.3347 |
196
+ | 0.1183 | 4.61 | 57600 | 0.5340 | 0.3362 |
197
+ | 0.1223 | 4.64 | 58000 | 0.5507 | 0.3414 |
198
+ | 0.1171 | 4.68 | 58400 | 0.5210 | 0.3430 |
199
+ | 0.1105 | 4.71 | 58800 | 0.5314 | 0.3429 |
200
+ | 0.114 | 4.74 | 59200 | 0.5118 | 0.3454 |
201
+ | 0.1093 | 4.77 | 59600 | 0.5342 | 0.3393 |
202
+ | 0.11 | 4.8 | 60000 | 0.5378 | 0.3413 |
203
+ | 0.1078 | 4.84 | 60400 | 0.5458 | 0.3466 |
204
+ | 0.1103 | 4.87 | 60800 | 0.5429 | 0.3368 |
205
+ | 0.1083 | 4.9 | 61200 | 0.5376 | 0.3417 |
206
+ | 0.1184 | 4.93 | 61600 | 0.5264 | 0.3435 |
207
+ | 0.1057 | 4.96 | 62000 | 0.5175 | 0.3366 |
208
+ | 0.1039 | 5.0 | 62400 | 0.5221 | 0.3334 |
209
+ | 0.0911 | 5.03 | 62800 | 0.5440 | 0.3420 |
210
+ | 0.0944 | 5.06 | 63200 | 0.5636 | 0.3381 |
211
+ | 0.0923 | 5.09 | 63600 | 0.5465 | 0.3363 |
212
+ | 0.0957 | 5.12 | 64000 | 0.5385 | 0.3371 |
213
+ | 0.0974 | 5.16 | 64400 | 0.5600 | 0.3333 |
214
+ | 0.087 | 5.19 | 64800 | 0.5346 | 0.3293 |
215
+ | 0.0878 | 5.22 | 65200 | 0.5561 | 0.3373 |
216
+ | 0.0929 | 5.25 | 65600 | 0.5392 | 0.3291 |
217
+ | 0.088 | 5.28 | 66000 | 0.5468 | 0.3338 |
218
+ | 0.0891 | 5.32 | 66400 | 0.5422 | 0.3306 |
219
+ | 0.0863 | 5.35 | 66800 | 0.5435 | 0.3328 |
220
+ | 0.0889 | 5.38 | 67200 | 0.5519 | 0.3363 |
221
+ | 0.0892 | 5.41 | 67600 | 0.5381 | 0.3384 |
222
+ | 0.0891 | 5.44 | 68000 | 0.5433 | 0.3321 |
223
+ | 0.0854 | 5.48 | 68400 | 0.5568 | 0.3397 |
224
+ | 0.0887 | 5.51 | 68800 | 0.5394 | 0.3379 |
225
+ | 0.0914 | 5.54 | 69200 | 0.5462 | 0.3288 |
226
+ | 0.0869 | 5.57 | 69600 | 0.5312 | 0.3331 |
227
+ | 0.0822 | 5.6 | 70000 | 0.5552 | 0.3346 |
228
+ | 0.085 | 5.64 | 70400 | 0.5686 | 0.3332 |
229
+ | 0.0842 | 5.67 | 70800 | 0.5431 | 0.3309 |
230
+ | 0.0833 | 5.7 | 71200 | 0.5440 | 0.3358 |
231
+ | 0.0865 | 5.73 | 71600 | 0.5411 | 0.3274 |
232
+ | 0.082 | 5.76 | 72000 | 0.5564 | 0.3311 |
233
+ | 0.0814 | 5.8 | 72400 | 0.5463 | 0.3315 |
234
+ | 0.0878 | 5.83 | 72800 | 0.5383 | 0.3296 |
235
+ | 0.0826 | 5.86 | 73200 | 0.5509 | 0.3329 |
236
+ | 0.0821 | 5.89 | 73600 | 0.5599 | 0.3332 |
237
+ | 0.0816 | 5.92 | 74000 | 0.5535 | 0.3294 |
238
+ | 0.0816 | 5.96 | 74400 | 0.5477 | 0.3317 |
239
+ | 0.0793 | 5.99 | 74800 | 0.5622 | 0.3356 |
240
+ | 0.0729 | 6.02 | 75200 | 0.5630 | 0.3284 |
241
+ | 0.0669 | 6.05 | 75600 | 0.5530 | 0.3279 |
242
+ | 0.0709 | 6.08 | 76000 | 0.5456 | 0.3315 |
243
+ | 0.0673 | 6.12 | 76400 | 0.5734 | 0.3348 |
244
+ | 0.0699 | 6.15 | 76800 | 0.5461 | 0.3284 |
245
+ | 0.0703 | 6.18 | 77200 | 0.5738 | 0.3228 |
246
+ | 0.0665 | 6.21 | 77600 | 0.5680 | 0.3254 |
247
+ | 0.0685 | 6.24 | 78000 | 0.5536 | 0.3256 |
248
+ | 0.0681 | 6.28 | 78400 | 0.5583 | 0.3327 |
249
+ | 0.0754 | 6.31 | 78800 | 0.5740 | 0.3290 |
250
+ | 0.0675 | 6.34 | 79200 | 0.5418 | 0.3249 |
251
+ | 0.064 | 6.37 | 79600 | 0.5550 | 0.3328 |
252
+ | 0.0656 | 6.4 | 80000 | 0.5630 | 0.3268 |
253
+ | 0.0644 | 6.44 | 80400 | 0.5788 | 0.3316 |
254
+ | 0.0623 | 6.47 | 80800 | 0.5665 | 0.3321 |
255
+ | 0.0592 | 6.5 | 81200 | 0.5826 | 0.3285 |
256
+ | 0.0679 | 6.53 | 81600 | 0.5695 | 0.3349 |
257
+ | 0.0608 | 6.56 | 82000 | 0.5881 | 0.3355 |
258
+ | 0.0637 | 6.6 | 82400 | 0.5779 | 0.3258 |
259
+ | 0.0576 | 6.63 | 82800 | 0.5557 | 0.3265 |
260
+ | 0.0578 | 6.66 | 83200 | 0.5611 | 0.3239 |
261
+ | 0.0607 | 6.69 | 83600 | 0.5656 | 0.3306 |
262
+ | 0.0609 | 6.72 | 84000 | 0.5741 | 0.3318 |
263
+ | 0.0629 | 6.76 | 84400 | 0.5554 | 0.3262 |
264
+ | 0.0603 | 6.79 | 84800 | 0.5614 | 0.3259 |
265
+ | 0.06 | 6.82 | 85200 | 0.5554 | 0.3257 |
266
+ | 0.0592 | 6.85 | 85600 | 0.5694 | 0.3307 |
267
+ | 0.0573 | 6.88 | 86000 | 0.5489 | 0.3251 |
268
+ | 0.0578 | 6.92 | 86400 | 0.5672 | 0.3341 |
269
+ | 0.0586 | 6.95 | 86800 | 0.5615 | 0.3197 |
270
+ | 0.0572 | 6.98 | 87200 | 0.5563 | 0.3181 |
271
+ | 0.0517 | 7.01 | 87600 | 0.5692 | 0.3254 |
272
+ | 0.0508 | 7.05 | 88000 | 0.5564 | 0.3234 |
273
+ | 0.0492 | 7.08 | 88400 | 0.5831 | 0.3208 |
274
+ | 0.0478 | 7.11 | 88800 | 0.5758 | 0.3227 |
275
+ | 0.0489 | 7.14 | 89200 | 0.5876 | 0.3233 |
276
+ | 0.0461 | 7.17 | 89600 | 0.5870 | 0.3272 |
277
+ | 0.0532 | 7.21 | 90000 | 0.5706 | 0.3283 |
278
+ | 0.0481 | 7.24 | 90400 | 0.5772 | 0.3203 |
279
+ | 0.0486 | 7.27 | 90800 | 0.5880 | 0.3287 |
280
+ | 0.0496 | 7.3 | 91200 | 0.5730 | 0.3276 |
281
+ | 0.0483 | 7.33 | 91600 | 0.5787 | 0.3257 |
282
+ | 0.0458 | 7.37 | 92000 | 0.5895 | 0.3198 |
283
+ | 0.0435 | 7.4 | 92400 | 0.5632 | 0.3205 |
284
+ | 0.0497 | 7.43 | 92800 | 0.5641 | 0.3257 |
285
+ | 0.0428 | 7.46 | 93200 | 0.5674 | 0.3245 |
286
+ | 0.0473 | 7.49 | 93600 | 0.5772 | 0.3246 |
287
+ | 0.0464 | 7.53 | 94000 | 0.5540 | 0.3249 |
288
+ | 0.0423 | 7.56 | 94400 | 0.5763 | 0.3220 |
289
+ | 0.0429 | 7.59 | 94800 | 0.5703 | 0.3266 |
290
+ | 0.0428 | 7.62 | 95200 | 0.5644 | 0.3218 |
291
+ | 0.0454 | 7.65 | 95600 | 0.5486 | 0.3176 |
292
+ | 0.0485 | 7.69 | 96000 | 0.5767 | 0.3211 |
293
+ | 0.0415 | 7.72 | 96400 | 0.5745 | 0.3151 |
294
+ | 0.0417 | 7.75 | 96800 | 0.5787 | 0.3179 |
295
+ | 0.0413 | 7.78 | 97200 | 0.5819 | 0.3193 |
296
+ | 0.044 | 7.81 | 97600 | 0.5701 | 0.3215 |
297
+ | 0.0475 | 7.85 | 98000 | 0.5624 | 0.3181 |
298
+ | 0.0431 | 7.88 | 98400 | 0.5834 | 0.3196 |
299
+ | 0.043 | 7.91 | 98800 | 0.5760 | 0.3185 |
300
+ | 0.0391 | 7.94 | 99200 | 0.5598 | 0.3149 |
301
+ | 0.038 | 7.97 | 99600 | 0.5707 | 0.3152 |
302
+ | 0.0355 | 8.01 | 100000 | 0.5921 | 0.3154 |
303
+ | 0.0408 | 8.04 | 100400 | 0.5817 | 0.3165 |
304
+ | 0.0358 | 8.07 | 100800 | 0.5953 | 0.3173 |
305
+ | 0.0345 | 8.1 | 101200 | 0.5875 | 0.3152 |
306
+ | 0.0342 | 8.13 | 101600 | 0.5794 | 0.3167 |
307
+ | 0.0332 | 8.17 | 102000 | 0.5818 | 0.3177 |
308
+ | 0.0296 | 8.2 | 102400 | 0.6034 | 0.3134 |
309
+ | 0.0345 | 8.23 | 102800 | 0.6054 | 0.3209 |
310
+ | 0.0336 | 8.26 | 103200 | 0.5711 | 0.3151 |
311
+ | 0.0345 | 8.29 | 103600 | 0.5896 | 0.3166 |
312
+ | 0.0327 | 8.33 | 104000 | 0.6064 | 0.3179 |
313
+ | 0.032 | 8.36 | 104400 | 0.6044 | 0.3175 |
314
+ | 0.0325 | 8.39 | 104800 | 0.6180 | 0.3163 |
315
+ | 0.0334 | 8.42 | 105200 | 0.5906 | 0.3185 |
316
+ | 0.0312 | 8.45 | 105600 | 0.6049 | 0.3178 |
317
+ | 0.0325 | 8.49 | 106000 | 0.5781 | 0.3164 |
318
+ | 0.031 | 8.52 | 106400 | 0.5855 | 0.3171 |
319
+ | 0.0328 | 8.55 | 106800 | 0.5997 | 0.3197 |
320
+ | 0.03 | 8.58 | 107200 | 0.5926 | 0.3145 |
321
+ | 0.0299 | 8.61 | 107600 | 0.5880 | 0.3137 |
322
+ | 0.0275 | 8.65 | 108000 | 0.6069 | 0.3162 |
323
+ | 0.0301 | 8.68 | 108400 | 0.6025 | 0.3176 |
324
+ | 0.0295 | 8.71 | 108800 | 0.5932 | 0.3151 |
325
+ | 0.0324 | 8.74 | 109200 | 0.5828 | 0.3166 |
326
+ | 0.027 | 8.77 | 109600 | 0.5895 | 0.3161 |
327
+ | 0.0321 | 8.81 | 110000 | 0.5780 | 0.3117 |
328
+ | 0.0276 | 8.84 | 110400 | 0.5868 | 0.3137 |
329
+ | 0.0287 | 8.87 | 110800 | 0.5800 | 0.3121 |
330
+ | 0.0273 | 8.9 | 111200 | 0.5959 | 0.3134 |
331
+ | 0.0283 | 8.93 | 111600 | 0.5935 | 0.3127 |
332
+ | 0.0258 | 8.97 | 112000 | 0.5863 | 0.3118 |
333
+ | 0.0274 | 9.0 | 112400 | 0.5929 | 0.3125 |
334
+ | 0.0244 | 9.03 | 112800 | 0.5965 | 0.3103 |
335
+ | 0.0238 | 9.06 | 113200 | 0.5934 | 0.3090 |
336
+ | 0.0257 | 9.09 | 113600 | 0.5842 | 0.3096 |
337
+ | 0.0211 | 9.13 | 114000 | 0.6073 | 0.3124 |
338
+ | 0.0244 | 9.16 | 114400 | 0.5998 | 0.3107 |
339
+ | 0.0217 | 9.19 | 114800 | 0.6081 | 0.3114 |
340
+ | 0.0223 | 9.22 | 115200 | 0.6002 | 0.3119 |
341
+ | 0.0234 | 9.25 | 115600 | 0.5951 | 0.3083 |
342
+ | 0.0249 | 9.29 | 116000 | 0.5880 | 0.3094 |
343
+ | 0.0234 | 9.32 | 116400 | 0.6013 | 0.3098 |
344
+ | 0.0202 | 9.35 | 116800 | 0.6112 | 0.3076 |
345
+ | 0.0232 | 9.38 | 117200 | 0.6048 | 0.3081 |
346
+ | 0.0225 | 9.41 | 117600 | 0.6125 | 0.3076 |
347
+ | 0.0194 | 9.45 | 118000 | 0.6086 | 0.3059 |
348
+ | 0.0212 | 9.48 | 118400 | 0.6024 | 0.3047 |
349
+ | 0.0234 | 9.51 | 118800 | 0.6022 | 0.3057 |
350
+ | 0.0205 | 9.54 | 119200 | 0.6033 | 0.3077 |
351
+ | 0.0215 | 9.57 | 119600 | 0.5974 | 0.3065 |
352
+ | 0.0235 | 9.61 | 120000 | 0.6042 | 0.3078 |
353
+ | 0.0206 | 9.64 | 120400 | 0.5996 | 0.3062 |
354
+ | 0.0236 | 9.67 | 120800 | 0.5922 | 0.3068 |
355
+ | 0.0216 | 9.7 | 121200 | 0.5912 | 0.3069 |
356
+ | 0.0198 | 9.74 | 121600 | 0.5933 | 0.3061 |
357
+ | 0.0175 | 9.77 | 122000 | 0.5972 | 0.3052 |
358
+ | 0.0234 | 9.8 | 122400 | 0.5887 | 0.3058 |
359
+ | 0.0183 | 9.83 | 122800 | 0.5952 | 0.3059 |
360
+ | 0.0205 | 9.86 | 123200 | 0.5946 | 0.3046 |
361
+ | 0.0211 | 9.9 | 123600 | 0.5981 | 0.3047 |
362
+ | 0.0206 | 9.93 | 124000 | 0.5962 | 0.3049 |
363
+ | 0.0218 | 9.96 | 124400 | 0.5960 | 0.3046 |
364
+ | 0.0215 | 9.99 | 124800 | 0.5955 | 0.3045 |
365
+
366
+
367
+ ### Framework versions
368
+
369
+ - Transformers 4.16.0.dev0
370
+ - Pytorch 1.10.1+cu102
371
+ - Datasets 1.17.1.dev0
372
+ - Tokenizers 0.11.0