File size: 17,678 Bytes
d20f3d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:704
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets: []
widget:
- source_sentence: Apa statistik peserta MSIB Batch 4 dan 5?
sentences:
- Ijazah dicetak berdasarkan data preview yang dipermanen oleh calon wisudawan.
Ijazah dicetak hanya sekali saja, bila ada kekeliruan pengisian data pada point
3 maka akan diterbitkan surat keterangan
- 'MSIB Batch 4: Total Mahasiswa diterima: 664 mahasiswa; Program Magang: 228 mahasiswa;
Program Studi Independen: 436 mahasiswa; Jumlah Mitra Industri: 108 Mitra
MSIB Batch 5: Total Mahasiswa diterima: 488 mahasiswa; Program Magang: 257 mahasiswa;
Program Studi Independen: 231 mahasiswa; Jumlah Mitra Industri: 121 Mitra'
- Bentuk kegiatan studi/ proyek independen bisa berupa lomba - lomba kemahasiswaan
atau proyek - proyek untuk memecahkan persoalan di ITS, di masyarakat atau industri.
- source_sentence: Apa deskripsi penelitian P12 tentang Numerical modeling and Experiments
of an atmospheric pressure plasma jet operated in air with shielding gas?
sentences:
- 'Deskripsi penelitian: Developing a two-dimensional axisymmetric plasma fluid
model integrated with a gas flow model to predict the dynamic behavior of a helium
atmospheric pressure plasma jet.'
- 'Sekilas Kerja Praktik
Jumlah kredit Mata Kuliah KP: 2 SKS'
- Nama pengarang, tahun publikasi, dan judul artikel/paper sama dengan penulisan
artikel dari jurnal. Judul buku dicetak miring/italic. Nomor volume dari buku
(jika ada). Edisi penerbitan. Nama editor didahului dengan ed. atau eds. bila
lebih dari satu editor. Nama penyelenggara seminar/conference. Kota tempat penyelenggaraan.
Nomor halaman dari artikel/paper tersebut di dalam prosiding.
- source_sentence: Bagaimana format penulisan referensi proyek mahasiswa?
sentences:
- Gedung KPA, Plaza dr.Angka, Lantai 1, Kampus ITS Sukolilo Surabaya.
- Nama pengarang dan tahun publikasi sama dengan penulisan artikel dari jurnal.
Judul proyek dicetak miring/italic. Jenis proyek. Nama perguruan tinggi. Kota
tempat penyelenggaraan.
- Nama pengarang dan tahun publikasi sama dengan penulisan artikel dari jurnal.
Judul standar teknis dicetak miring/italic. Nama penerbit. Kota tempat diterbitkan.
- source_sentence: MyITS saya bermasalah, bisa lapor kemana?
sentences:
- Mahasiswa yang ingin mendaftar sidang proposal tesis, harus melengkapi berkas
persyaratan pendaftaransidang proposal tesis, meliputi draft proposal tesis dan
lembar persetujuan pembimbing.
- 'B. Bagi Dosen Wali
2. Jika dinilai sudah sesuai, pengajuan perencanaan Kegiatan SKEM/ Program MB-KM
oleh mahasiswa, dosen wali dapat melakukan persetujuan FRS.'
- Silakan ajukan tiket ke DPTSI di https://servicedesk.its.ac.id/.
- source_sentence: Apa saja panduan umum pelaksanaan Program Magang di ITS?
sentences:
- 'Mahasiswa dalam melaksanakan magang harus memenuhi ketentuan berikut: 1. Pelaksanaan
Program Magang memiliki durasi minimal 1 bulan dan maksimal 6 bulan. 2. Selama
Program Magang berlangsung, mahasiswa tidak harus mengajukan cuti. 3. Mahasiswa
secara penuh waktu bekerja di lapangan sesuai kesepakatan. 4. Mahasiswa bisa mendapatkan
izin untuk kegiatan akademik tertentu dengan kesepakatan pihak Mitra Magang. 5.
Mahasiswa dapat mengajukan konversi mata kuliah dengan CPMK yang selaras. 6. Diperlukan
pembimbing internal dari Dosen Departemen dan pembimbing lapangan dari Mitra Magang.
7. Sebelum Program Magang, wajib menandatangani perjanjian kerjasama dan nota
kesepahaman.'
- Pelaksanaan transfer kegiatan MB - KM menjadi sks mata kuliah, program studi atau
direktorat membentuk tim pelaksana transfer kredit.
- '1. Mahasiswa mengurus surat rekomendasi departemen untuk pengajuan magang ke
Mitra
2. Mahasiswa mengajukan permohonan magang ke Mitra
3. Mitra melakukan seleksi magang
4. Mahasiswa menerima hasil seleksi magang dari Mitra
5. Apabila tidak diterima, maka mahasiswa harus mengulang sejak langkah awal
6. Apabila diterima, Mahasiswa melaporkan ke Departemen
7. Mahasiswa/Departemen melakukan koordinasi dengan PK2 untuk pengurusan PKS dengan
menyertakan Proposal Magang, Surat Rekomendasi Departemen dan Surat Penerimaan
Magang
8. Proses pengurusan PKS (Dapat dilakukan bersamaan dengan pelaksanaan Magang)'
pipeline_tag: sentence-similarity
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision bf3bf13ab40c3157080a7ab344c831b9ad18b5eb -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Apa saja panduan umum pelaksanaan Program Magang di ITS?',
'Mahasiswa dalam melaksanakan magang harus memenuhi ketentuan berikut: 1. Pelaksanaan Program Magang memiliki durasi minimal 1 bulan dan maksimal 6 bulan. 2. Selama Program Magang berlangsung, mahasiswa tidak harus mengajukan cuti. 3. Mahasiswa secara penuh waktu bekerja di lapangan sesuai kesepakatan. 4. Mahasiswa bisa mendapatkan izin untuk kegiatan akademik tertentu dengan kesepakatan pihak Mitra Magang. 5. Mahasiswa dapat mengajukan konversi mata kuliah dengan CPMK yang selaras. 6. Diperlukan pembimbing internal dari Dosen Departemen dan pembimbing lapangan dari Mitra Magang. 7. Sebelum Program Magang, wajib menandatangani perjanjian kerjasama dan nota kesepahaman.',
'1. Mahasiswa mengurus surat rekomendasi departemen untuk pengajuan magang ke Mitra\n2. Mahasiswa mengajukan permohonan magang ke Mitra\n3. Mitra melakukan seleksi magang\n4. Mahasiswa menerima hasil seleksi magang dari Mitra\n5. Apabila tidak diterima, maka mahasiswa harus mengulang sejak langkah awal\n6. Apabila diterima, Mahasiswa melaporkan ke Departemen\n7. Mahasiswa/Departemen melakukan koordinasi dengan PK2 untuk pengurusan PKS dengan menyertakan Proposal Magang, Surat Rekomendasi Departemen dan Surat Penerimaan Magang\n8. Proses pengurusan PKS (Dapat dilakukan bersamaan dengan pelaksanaan Magang)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 704 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 16.22 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 57.55 tokens</li><li>max: 128 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:-----------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Bagaimana cara menulis dokumen pemerintah dalam daftar pustaka?</code> | <code>Nama pengarang dan tahun publikasi sama dengan penulisan artikel dari jurnal. Judul dokumen dicetak miring/italic. Volume atau nomor (jika ada). Nama penerbit. Kota tempat diterbitkan.</code> |
| <code>Apa tugas dosen wali dalam pelaksanaan MBKM?</code> | <code>Dosen wali ditugaskan oleh Prodi untuk membuat perencanaan bersama dengan mahasiswa yang akan melaksanakan kegiatan MBKM, melakukan evaluasi terhadap kesesuaian bentuk dan lama pelaksanaan MBKM, serta melakukan penilaian atas rencana, pelaksanaan, dan evaluasi MBKM.</code> |
| <code>Apa yang dimaksud dengan 'Hak Belajar Tiga Semester di Luar Program Studi'?</code> | <code>Hak Belajar Tiga Semester di Luar Program Studi adalah kebijakan yang memberikan mahasiswa kesempatan untuk satu semester (setara dengan 20 SKS) menempuh pembelajaran di luar program studi pada perguruan tinggi yang sama, dan paling lama dua semester (setara dengan 40 SKS) di program studi yang sama atau berbeda di perguruan tinggi yang berbeda atau di luar perguruan tinggi.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.0.1
- Transformers: 4.39.2
- PyTorch: 2.3.1+cu121
- Accelerate: 0.29.3
- Datasets: 2.19.2
- Tokenizers: 0.15.2
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |