File size: 17,678 Bytes
d20f3d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:704
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets: []
widget:
- source_sentence: Apa statistik peserta MSIB Batch 4 dan 5?
  sentences:
  - Ijazah dicetak berdasarkan data preview yang dipermanen oleh calon wisudawan.
    Ijazah dicetak hanya sekali saja, bila ada kekeliruan pengisian data pada point
    3 maka akan diterbitkan surat keterangan
  - 'MSIB Batch 4: Total Mahasiswa diterima: 664 mahasiswa; Program Magang: 228 mahasiswa;
    Program Studi Independen: 436 mahasiswa; Jumlah Mitra Industri: 108 Mitra

    MSIB Batch 5: Total Mahasiswa diterima: 488 mahasiswa; Program Magang: 257 mahasiswa;
    Program Studi Independen: 231 mahasiswa; Jumlah Mitra Industri: 121 Mitra'
  - Bentuk kegiatan studi/ proyek independen bisa berupa lomba - lomba kemahasiswaan
    atau proyek - proyek untuk memecahkan persoalan di ITS, di masyarakat atau industri.
- source_sentence: Apa deskripsi penelitian P12 tentang Numerical modeling and Experiments
    of an atmospheric pressure plasma jet operated in air with shielding gas?
  sentences:
  - 'Deskripsi penelitian: Developing a two-dimensional axisymmetric plasma fluid
    model integrated with a gas flow model to predict the dynamic behavior of a helium
    atmospheric pressure plasma jet.'
  - 'Sekilas Kerja Praktik

    Jumlah kredit Mata Kuliah KP: 2 SKS'
  - Nama pengarang, tahun publikasi, dan judul artikel/paper sama dengan penulisan
    artikel dari jurnal. Judul buku dicetak miring/italic. Nomor volume dari buku
    (jika ada). Edisi penerbitan. Nama editor didahului dengan ed. atau eds. bila
    lebih dari satu editor. Nama penyelenggara seminar/conference. Kota tempat penyelenggaraan.
    Nomor halaman dari artikel/paper tersebut di dalam prosiding.
- source_sentence: Bagaimana format penulisan referensi proyek mahasiswa?
  sentences:
  - Gedung KPA, Plaza dr.Angka, Lantai 1, Kampus ITS Sukolilo Surabaya.
  - Nama pengarang dan tahun publikasi sama dengan penulisan artikel dari jurnal.
    Judul proyek dicetak miring/italic. Jenis proyek. Nama perguruan tinggi. Kota
    tempat penyelenggaraan.
  - Nama pengarang dan tahun publikasi sama dengan penulisan artikel dari jurnal.
    Judul standar teknis dicetak miring/italic. Nama penerbit. Kota tempat diterbitkan.
- source_sentence: MyITS saya bermasalah, bisa lapor kemana?
  sentences:
  - Mahasiswa yang ingin mendaftar sidang proposal tesis, harus melengkapi berkas
    persyaratan pendaftaransidang proposal tesis, meliputi draft proposal tesis dan
    lembar persetujuan pembimbing.
  - 'B. Bagi Dosen Wali

    2. Jika dinilai sudah sesuai, pengajuan perencanaan Kegiatan SKEM/ Program MB-KM
    oleh mahasiswa, dosen wali dapat melakukan persetujuan FRS.'
  - Silakan ajukan tiket ke DPTSI di https://servicedesk.its.ac.id/.
- source_sentence: Apa saja panduan umum pelaksanaan Program Magang di ITS?
  sentences:
  - 'Mahasiswa dalam melaksanakan magang harus memenuhi ketentuan berikut: 1. Pelaksanaan
    Program Magang memiliki durasi minimal 1 bulan dan maksimal 6 bulan. 2. Selama
    Program Magang berlangsung, mahasiswa tidak harus mengajukan cuti. 3. Mahasiswa
    secara penuh waktu bekerja di lapangan sesuai kesepakatan. 4. Mahasiswa bisa mendapatkan
    izin untuk kegiatan akademik tertentu dengan kesepakatan pihak Mitra Magang. 5.
    Mahasiswa dapat mengajukan konversi mata kuliah dengan CPMK yang selaras. 6. Diperlukan
    pembimbing internal dari Dosen Departemen dan pembimbing lapangan dari Mitra Magang.
    7. Sebelum Program Magang, wajib menandatangani perjanjian kerjasama dan nota
    kesepahaman.'
  - Pelaksanaan transfer kegiatan MB - KM menjadi sks mata kuliah, program studi atau
    direktorat membentuk tim pelaksana transfer kredit.
  - '1. Mahasiswa mengurus surat rekomendasi departemen untuk pengajuan magang ke
    Mitra

    2. Mahasiswa mengajukan permohonan magang ke Mitra

    3. Mitra melakukan seleksi magang

    4. Mahasiswa menerima hasil seleksi magang dari Mitra

    5. Apabila tidak diterima, maka mahasiswa harus mengulang sejak langkah awal

    6. Apabila diterima, Mahasiswa melaporkan ke Departemen

    7. Mahasiswa/Departemen melakukan koordinasi dengan PK2 untuk pengurusan PKS dengan
    menyertakan Proposal Magang, Surat Rekomendasi Departemen dan Surat Penerimaan
    Magang

    8. Proses pengurusan PKS (Dapat dilakukan bersamaan dengan pelaksanaan Magang)'
pipeline_tag: sentence-similarity
---

# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision bf3bf13ab40c3157080a7ab344c831b9ad18b5eb -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Apa saja panduan umum pelaksanaan Program Magang di ITS?',
    'Mahasiswa dalam melaksanakan magang harus memenuhi ketentuan berikut: 1. Pelaksanaan Program Magang memiliki durasi minimal 1 bulan dan maksimal 6 bulan. 2. Selama Program Magang berlangsung, mahasiswa tidak harus mengajukan cuti. 3. Mahasiswa secara penuh waktu bekerja di lapangan sesuai kesepakatan. 4. Mahasiswa bisa mendapatkan izin untuk kegiatan akademik tertentu dengan kesepakatan pihak Mitra Magang. 5. Mahasiswa dapat mengajukan konversi mata kuliah dengan CPMK yang selaras. 6. Diperlukan pembimbing internal dari Dosen Departemen dan pembimbing lapangan dari Mitra Magang. 7. Sebelum Program Magang, wajib menandatangani perjanjian kerjasama dan nota kesepahaman.',
    '1. Mahasiswa mengurus surat rekomendasi departemen untuk pengajuan magang ke Mitra\n2. Mahasiswa mengajukan permohonan magang ke Mitra\n3. Mitra melakukan seleksi magang\n4. Mahasiswa menerima hasil seleksi magang dari Mitra\n5. Apabila tidak diterima, maka mahasiswa harus mengulang sejak langkah awal\n6. Apabila diterima, Mahasiswa melaporkan ke Departemen\n7. Mahasiswa/Departemen melakukan koordinasi dengan PK2 untuk pengurusan PKS dengan menyertakan Proposal Magang, Surat Rekomendasi Departemen dan Surat Penerimaan Magang\n8. Proses pengurusan PKS (Dapat dilakukan bersamaan dengan pelaksanaan Magang)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 704 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                        | sentence_1                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 6 tokens</li><li>mean: 16.22 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 57.55 tokens</li><li>max: 128 tokens</li></ul> |
* Samples:
  | sentence_0                                                                               | sentence_1                                                                                                                                                                                                                                                                                                                                                                                             |
  |:-----------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Bagaimana cara menulis dokumen pemerintah dalam daftar pustaka?</code>             | <code>Nama pengarang dan tahun publikasi sama dengan penulisan artikel dari jurnal. Judul dokumen dicetak miring/italic. Volume atau nomor (jika ada). Nama penerbit. Kota tempat diterbitkan.</code>                                                                                                                                                                                                  |
  | <code>Apa tugas dosen wali dalam pelaksanaan MBKM?</code>                                | <code>Dosen wali ditugaskan oleh Prodi untuk membuat perencanaan bersama dengan mahasiswa yang akan melaksanakan kegiatan MBKM, melakukan evaluasi terhadap kesesuaian bentuk dan lama pelaksanaan MBKM, serta melakukan penilaian atas rencana, pelaksanaan, dan evaluasi MBKM.</code>                                                                                                                |
  | <code>Apa yang dimaksud dengan 'Hak Belajar Tiga Semester di Luar Program Studi'?</code> | <code>Hak Belajar Tiga Semester di Luar Program Studi adalah kebijakan yang memberikan mahasiswa kesempatan untuk satu semester (setara dengan 20 SKS) menempuh pembelajaran di luar program studi pada perguruan tinggi yang sama, dan paling lama dua semester (setara dengan 40 SKS) di program studi yang sama atau berbeda di perguruan tinggi yang berbeda atau di luar perguruan tinggi.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.0.1
- Transformers: 4.39.2
- PyTorch: 2.3.1+cu121
- Accelerate: 0.29.3
- Datasets: 2.19.2
- Tokenizers: 0.15.2

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->