rahulm-selector commited on
Commit
2c11d3d
·
verified ·
1 Parent(s): 1c43e8c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -170
README.md CHANGED
@@ -1,199 +1,91 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
9
 
 
 
 
10
 
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
45
 
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
 
 
 
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
1
  ---
2
+ language: en
3
+ library_name: LogClassifier
4
+ tags:
5
+ - log-classification
6
+ - log feature
7
+ - log-similarity
8
+ - transformers
9
+ - AIOps
10
+ pipeline_tag: text-classification
11
  ---
12
 
 
13
 
14
+ # log-classifier-BERT-v1
15
+ log-classifier-v1 is a neural network-based log classification model, trained from BERTForSequenceClassification designed for use in network and device log mining tasks.
16
+ Developed by [Selector AI](https://www.selector.ai/)
17
 
18
+ ## Model Usage (HuggingFace Transformers)
19
+ ```python
20
+ from transformers import BertForSequenceClassification, BertTokenizer
21
 
22
+ # Load the model and tokenizer from Hugging Face
23
+ model = BertForSequenceClassification.from_pretrained("rahulm-selector/log-classifier-BERT-v1")
24
+ tokenizer = BertTokenizer.from_pretrained("rahulm-selector/log-classifier-BERT-v1")
25
 
26
+ import torch
27
 
28
+ model.eval()
29
 
30
+ # Step 2: Prepare the input data (Example log text)
31
+ log_text = "Error occurred while accessing the database."
32
 
33
+ # Tokenize the input data
34
+ inputs = tokenizer(log_text, return_tensors="pt", padding=True, truncation=True, max_length=128)
35
 
36
+ # Step 3: Make predictions
37
+ with torch.no_grad():
38
+ outputs = model(**inputs)
39
+ logits = outputs.logits
 
 
 
40
 
41
+ # Step 4: Get the predicted class (the class with the highest score)
42
+ predicted_class = torch.argmax(logits, dim=1).item()
43
 
44
+ # Example label mapping (you can load this from a JSON file or config)
45
+ label_mapping = model.config.id2label
46
 
47
+ # Get the event name from the predicted class
48
+ predicted_event = label_mapping[predicted_class]
 
49
 
50
+ print(f"Predicted Event: {predicted_event}")
51
+ ```
52
 
53
+ ## Background
54
 
55
+ The model focuses on structured and semi-structured log data, outputing around 60 different event categories. It is highly effective
56
+ for real-time log analysis, anomaly detection, and operational monitoring, helping organizations manage
57
+ large-scale network data by automatically classifying logs into predefined categories, facilitating faster
58
+ and more accurate diagnosis of network issues. The log-classifier-BERT-v1 model is designed to process logs as
59
+ input and output a corresponding classification.
60
 
61
+ ## Intended uses
62
 
63
+ Our model is intended to be used as classifier. Given an input text (a log coming from a network/device), it outputs the corresponding event most associated with the log.
64
+ The possible events that can be classified are shown in [encoder.json](https://huggingface.co/rahulm-selector/log-classifier-v1/blob/main/encoder.json)
65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
  ## Training Details
68
 
69
+ ### Data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
+ The model was trained on log data sourced from various network and infrastructure devices,
72
+ capturing crucial system events and performance metrics. Syslogs originated from network routers,
73
+ switches, firewalls, and servers, providing a rich dataset of operational insights including security events,
74
+ traffic patterns, and hardware health statuses.
75
 
76
+ ### Train/Test Split
77
 
78
+ - **Train Data Size**: `~80K Logs`
79
+ - **Test Data Size**: `~20K Logs`
80
 
81
+ #### Hyper Parameters
82
 
83
+ The following hyperparameters were used during training to optimize the model's performance:
84
 
85
+ - **Batch Size**: `32`
86
+ - **Learning Rate**: `.001`
87
+ - **Optimizer**: `Adam`
88
+ - **Epochs**: `10`
89
+ - **Dropout Rate**: N/A
90
+ - **LSTM Hidden Dimension**: `384`
91
+ - **Embedding Dimension**: `384`