File size: 2,035 Bytes
c2ff33f
 
 
 
 
 
 
 
 
 
 
 
f246912
c2ff33f
ceebc6f
8c6d17b
ceebc6f
8c6d17b
ceebc6f
8c6d17b
ceebc6f
8c6d17b
 
 
ceebc6f
 
 
 
8c6d17b
ceebc6f
8c6d17b
ceebc6f
8c6d17b
ceebc6f
8c6d17b
 
ceebc6f
 
 
 
8c6d17b
ceebc6f
 
 
 
 
8c6d17b
 
ceebc6f
 
 
 
8c6d17b
ceebc6f
8c6d17b
 
ceebc6f
 
 
8c6d17b
c2ff33f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: mit
datasets:
- b-mc2/sql-create-context
language:
- en
- id
base_model:
- meta-llama/Llama-3.2-1B
tags:
- SQL
- Llama
- guff
---
# Model Card for LLaMA-3-8B SQL Fine-Tuned Model

## Model Overview

This model is a fine-tuned version of the `unsloth/llama-3-8b-bnb-4bit` model, specifically adapted for SQL-related tasks using the `b-mc2/sql-create-context` dataset. It leverages the **PEFT (Parameter-Efficient Fine-Tuning)** library for efficient training and is optimized for **graph-ml** tasks.

---

## Model Details

- **Base Model:** `unsloth/llama-3-8b-bnb-4bit`
- **Fine-Tuning Dataset:** `b-mc2/sql-create-context`
- **Model Type:** Fine-tuned language model for SQL generation and understanding.
- **Framework:** PEFT (Parameter-Efficient Fine-Tuning)
- **License:** [More Information Needed]
- **Developed by:** [More Information Needed]

---

## Intended Use

### Direct Use
This model is designed for generating SQL queries from natural language prompts or contextual descriptions. It can be used directly for:
- SQL query generation
- Database interaction automation
- Educational tools for learning SQL

### Downstream Use
The model can be fine-tuned further for specific database schemas or integrated into larger applications such as:
- Database management systems
- Business intelligence tools
- Data analytics platforms

### Out-of-Scope Use
This model is not intended for:
- Non-SQL-related tasks
- Generating malicious or harmful SQL queries
- Use cases requiring high precision without human validation

---

## Bias, Risks, and Limitations
- **Bias:** The model may inherit biases present in the training data, such as favoring certain SQL dialects or structures.
- **Risks:** Incorrect SQL generation could lead to data corruption or security vulnerabilities if used without validation.
- **Limitations:** Performance may vary across different database schemas or complex queries.

**Recommendations:** Always validate generated SQL queries before execution, especially in production environments.