File size: 1,939 Bytes
ff90834 7ee183c 085f5d9 7ee183c ff90834 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: mit
datasets: AllenTAN/image_sentiment
base_model: google/efficientnet-b2
---
# EfficientNet B2 Image Classification
This project implements an image classification model using the EfficientNet B2 architecture, fine-tuned on a custom dataset. It provides a modular and easy-to-use structure for training and evaluating the model.
Dataset used: AllenTAN/image_sentiment
## Project Structure
```
project_root/
β
βββ data/
β βββ train/
β βββ test/
β
βββ src/
β βββ __init__.py
β βββ data_setup.py
β βββ train_and_test.py
β βββ model.py
β
βββ main.py
βββ requirements.txt
βββ README.md
```
- `data/`: Contains the training and testing datasets.
- `src/`: Source code for the project.
- `main.py`: The entry point of the project.
## Setup
1. Clone the repository:
```
git clone https://github.com/brepositorium/effnetb2-sentiment-analysis.git
cd effnetb2-sentiment-analysis
```
2. Create a virtual environment and activate it:
```
python -m venv venv
source venv/bin/activate # On Windows, use `venv\Scripts\activate`
```
3. Install the required packages:
```
pip install -r requirements.txt
```
## Usage
To train the model, run:
```
python main.py
```
This will start the training process using the EfficientNet B2 model on your dataset. The script will output training progress and final results.
## Customization
- Edit `src/model.py` to experiment with different model architectures or layer configurations.
- Adjust data augmentation in `src/data_setup.py` if needed.
## Results
After training, the model will output training and validation accuracy and loss. You can find these results printed in the console output.
## Contributing
Feel free to open issues or submit pull requests if you have suggestions for improvements or encounter any problems.
## License
MIT License |