Update README.md
Browse filesAdded sample python usage
README.md
CHANGED
@@ -20,3 +20,32 @@ Eval loss:
|
|
20 |
|
21 |

|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |

|
22 |
|
23 |
+
|
24 |
+
**Sample model usage**
|
25 |
+
```[python]
|
26 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
27 |
+
|
28 |
+
model = T5ForConditionalGeneration.from_pretrained(model_path)
|
29 |
+
tokenizer = T5Tokenizer.from_pretrained(model_path)
|
30 |
+
|
31 |
+
def do_inference(text, model, tokenizer):
|
32 |
+
input_text = f"denoise: {text}"
|
33 |
+
inputs = tokenizer.encode(
|
34 |
+
input_text,
|
35 |
+
return_tensors="pt",
|
36 |
+
max_length=256,
|
37 |
+
padding="max_length",
|
38 |
+
truncation=True,
|
39 |
+
)
|
40 |
+
|
41 |
+
corrected_ids = model.generate(
|
42 |
+
inputs,
|
43 |
+
max_length=256,
|
44 |
+
num_beams=5,
|
45 |
+
early_stopping=True,
|
46 |
+
)
|
47 |
+
|
48 |
+
corrected_sentence = tokenizer.decode(corrected_ids[0], skip_special_tokens=True)
|
49 |
+
return corrected_sentence
|
50 |
+
```
|
51 |
+
|