quilaquedi commited on
Commit
12777ac
·
1 Parent(s): 70b6d7c

Upload baseline PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 269.76 +/- 17.60
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7b482cbc10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7b482cbca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7b482cbd30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7b482cbdc0>", "_build": "<function ActorCriticPolicy._build at 0x7f7b482cbe50>", "forward": "<function ActorCriticPolicy.forward at 0x7f7b482cbee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7b482cbf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7b482cd040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7b482cd0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7b482cd160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7b482cd1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7b482cd280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7b482ce040>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678867849269562758, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIi8QENbxUcUCUhpRSlIwBbJRNlgGMAXSUR0CeQDapgkTpdX2UKGgGaAloD0MI7ISX4FQJc0CUhpRSlGgVS+1oFkdAnkBKZML4OHV9lChoBmgJaA9DCHC2uTG9YXBAlIaUUpRoFU0JAWgWR0CeQZh2GIsRdX2UKGgGaAloD0MIU1vqIC+tcUCUhpRSlGgVTRYBaBZHQJ5CEISlFc91fZQoaAZoCWgPQwh6jV2iupdwQJSGlFKUaBVNPAFoFkdAnkLv0qYqonV9lChoBmgJaA9DCITU7ewr825AlIaUUpRoFU1aAWgWR0CeQ1uNgjQidX2UKGgGaAloD0MIMzLIXYQmckCUhpRSlGgVTRsBaBZHQJ5DWdpZfUp1fZQoaAZoCWgPQwijW6/pQYFzQJSGlFKUaBVL/WgWR0CeRKSPU8V6dX2UKGgGaAloD0MII0vmWB70cECUhpRSlGgVTQ4BaBZHQJ5FJbxEv011fZQoaAZoCWgPQwh2+6wyU/BtQJSGlFKUaBVNOwFoFkdAnkYmznied3V9lChoBmgJaA9DCLL2d7YHdHFAlIaUUpRoFU1HAWgWR0CeRpkAPuohdX2UKGgGaAloD0MIescpOpL+b0CUhpRSlGgVTRABaBZHQJ5HXStvGZN1fZQoaAZoCWgPQwgX8Z2YNWFwQJSGlFKUaBVNHAFoFkdAnkdkvkBCD3V9lChoBmgJaA9DCF/Tg4LSUnBAlIaUUpRoFU00AWgWR0CeR7va11GLdX2UKGgGaAloD0MI7N6KxAQDc0CUhpRSlGgVTT0BaBZHQJ5IcedTYNB1fZQoaAZoCWgPQwiOQLyu34BxQJSGlFKUaBVNMgFoFkdAnkiAh8pkPXV9lChoBmgJaA9DCAM+P4yQeHJAlIaUUpRoFU3gAWgWR0CeSLLCN0eVdX2UKGgGaAloD0MIcm2oGOcec0CUhpRSlGgVTS0BaBZHQJ5KJj/dZaF1fZQoaAZoCWgPQwioAYOkTylyQJSGlFKUaBVL7WgWR0CeSl6HCXQddX2UKGgGaAloD0MII4eIm9M6c0CUhpRSlGgVTXABaBZHQJ5K6Dxsl9l1fZQoaAZoCWgPQwig3oyar4tvQJSGlFKUaBVNOAFoFkdAnku5cTrVv3V9lChoBmgJaA9DCOhNRSqM03FAlIaUUpRoFU0PAWgWR0CeS+8iwB5pdX2UKGgGaAloD0MIK/cCswKLcUCUhpRSlGgVTUwBaBZHQJ5M+Y5T6zp1fZQoaAZoCWgPQwiYwoNm111yQJSGlFKUaBVL+2gWR0CeTQyxA0KrdX2UKGgGaAloD0MII4Wy8HWJcUCUhpRSlGgVTToBaBZHQJ5OSEh7mdR1fZQoaAZoCWgPQwgBM9/Bz6tyQJSGlFKUaBVNBwFoFkdAnk6SX6ZYxXV9lChoBmgJaA9DCPooIy6ANXJAlIaUUpRoFU0fAWgWR0CeTteKbaysdX2UKGgGaAloD0MIAS8zbBTgckCUhpRSlGgVTQUBaBZHQJ5PKl67dzp1fZQoaAZoCWgPQwiSk4lbRW9yQJSGlFKUaBVNAwFoFkdAnlBNYW+GoXV9lChoBmgJaA9DCIfguIwbWXFAlIaUUpRoFU0lAWgWR0CeUHQT238XdX2UKGgGaAloD0MIS+mZXiI9cECUhpRSlGgVTToBaBZHQJ5QsYoAn2J1fZQoaAZoCWgPQwjJ42n5gVpxQJSGlFKUaBVL5GgWR0CeUTyMkyDadX2UKGgGaAloD0MIH6FmSJUjckCUhpRSlGgVTSUBaBZHQJ5RZVS4vvl1fZQoaAZoCWgPQwiERrBxva9yQJSGlFKUaBVL/2gWR0CeUaGFzuF6dX2UKGgGaAloD0MITbwDPKkLcECUhpRSlGgVS/RoFkdAnlIsZ5zHTHV9lChoBmgJaA9DCFddh2oKTXBAlIaUUpRoFU1PAWgWR0CeUlxOLzf8dX2UKGgGaAloD0MIbw1sleC9bECUhpRSlGgVTSEBaBZHQJ5S4WRA8jl1fZQoaAZoCWgPQwgT1zGuuBhvQJSGlFKUaBVNHAFoFkdAnlPXVTaTOnV9lChoBmgJaA9DCDMzMzPzC3FAlIaUUpRoFU0cAWgWR0CeVV2t+1BudX2UKGgGaAloD0MI5V5gVqhgcUCUhpRSlGgVS+JoFkdAnlZCN4qwyXV9lChoBmgJaA9DCCXs20lEREtAlIaUUpRoFUvBaBZHQJ5XKQ8wHqx1fZQoaAZoCWgPQwgydsJLMNhxQJSGlFKUaBVNFwFoFkdAnlcuNo8IRnV9lChoBmgJaA9DCEloy7mUPW5AlIaUUpRoFU1uAWgWR0CeWNRRdhRZdX2UKGgGaAloD0MIclKY97iDbkCUhpRSlGgVTUoBaBZHQJ5udY9xIat1fZQoaAZoCWgPQwiP+1brhLdwQJSGlFKUaBVNCgFoFkdAnm6PUKArhHV9lChoBmgJaA9DCBNE3QdgdHFAlIaUUpRoFU0XAWgWR0Cebsg0CRwIdX2UKGgGaAloD0MIev8fJwwkcUCUhpRSlGgVTQcBaBZHQJ5vgvqTr3V1fZQoaAZoCWgPQwgQecvVj+dtQJSGlFKUaBVL72gWR0Ceb6RiPQv6dX2UKGgGaAloD0MIGqchqnBAbECUhpRSlGgVTQkBaBZHQJ5v3oFFDv51fZQoaAZoCWgPQwg8M8Fwro5xQJSGlFKUaBVNHwFoFkdAnnAKVyFPBXV9lChoBmgJaA9DCJ0QOugSF2tAlIaUUpRoFU19AWgWR0CecDjhUBGQdX2UKGgGaAloD0MIzox+NBzZb0CUhpRSlGgVTQMBaBZHQJ5wTLIPsiV1fZQoaAZoCWgPQwgR5KCE2ahyQJSGlFKUaBVL/GgWR0CecHZXdTHbdX2UKGgGaAloD0MIIAiQoaNvcUCUhpRSlGgVTTIBaBZHQJ5yaZNO/L11fZQoaAZoCWgPQwhihsYTwSVtQJSGlFKUaBVL92gWR0Cecqouf29MdX2UKGgGaAloD0MIYjB/hUzJbkCUhpRSlGgVTQoBaBZHQJ5zy4qgAZN1fZQoaAZoCWgPQwhzEHS06nZxQJSGlFKUaBVNBAFoFkdAnnT2thd+onV9lChoBmgJaA9DCH3nFyVoj3FAlIaUUpRoFUv6aBZHQJ51jXvphWp1fZQoaAZoCWgPQwigibDhKWlwQJSGlFKUaBVNRgFoFkdAnnYcRUWEb3V9lChoBmgJaA9DCMTuO4aHhnNAlIaUUpRoFU0tAWgWR0Ced1mOlwcYdX2UKGgGaAloD0MI6GZ/oJzbcECUhpRSlGgVTZoBaBZHQJ53Ws1baAZ1fZQoaAZoCWgPQwjbatYZ38lyQJSGlFKUaBVNDQFoFkdAnndjZg5R0nV9lChoBmgJaA9DCM9Nm3GaFW9AlIaUUpRoFU0ZAWgWR0Ced96ySmqHdX2UKGgGaAloD0MIZXCUvDrkckCUhpRSlGgVTREBaBZHQJ54DlcQiA51fZQoaAZoCWgPQwhOfSB5Z0dwQJSGlFKUaBVNTAFoFkdAnniCR0U473V9lChoBmgJaA9DCLTlXIrrKXBAlIaUUpRoFU0QAWgWR0CeeJHR1HOKdX2UKGgGaAloD0MIUwPN51zxcECUhpRSlGgVTR0BaBZHQJ54mIEbHZN1fZQoaAZoCWgPQwjisZ/F0u1tQJSGlFKUaBVNIAFoFkdAnnjBISUTtnV9lChoBmgJaA9DCBfZzvcTUHNAlIaUUpRoFU04AWgWR0CeeOBBAv+PdX2UKGgGaAloD0MIJhjONUwIckCUhpRSlGgVTQYBaBZHQJ56D668QI51fZQoaAZoCWgPQwj85ChAlJtxQJSGlFKUaBVNGAFoFkdAnnvQfZElV3V9lChoBmgJaA9DCD+QvHMoWm5AlIaUUpRoFUv5aBZHQJ58tNDc/MZ1fZQoaAZoCWgPQwg983LY/eRwQJSGlFKUaBVNaQFoFkdAnn0dv0h/zHV9lChoBmgJaA9DCME5I0q75XFAlIaUUpRoFU0wAWgWR0CeffBhhH9WdX2UKGgGaAloD0MIhzJUxRSacUCUhpRSlGgVTQ0BaBZHQJ5+iRJVbRp1fZQoaAZoCWgPQwiGjbJ+c91yQJSGlFKUaBVNVQFoFkdAnn7AVfu1GHV9lChoBmgJaA9DCLQglPfxt29AlIaUUpRoFU0dAWgWR0CefwWHk92YdX2UKGgGaAloD0MIxM4UOi+EcUCUhpRSlGgVTQkBaBZHQJ5/Gi5/b0x1fZQoaAZoCWgPQwhN9s/TANtxQJSGlFKUaBVNMQFoFkdAnn+VCPZIx3V9lChoBmgJaA9DCBh6xOi5g21AlIaUUpRoFU0gAWgWR0CegDco6S1WdX2UKGgGaAloD0MIYd14d6TocUCUhpRSlGgVTTsBaBZHQJ6AS/pMYdh1fZQoaAZoCWgPQwjQRxlxAXhwQJSGlFKUaBVNHwFoFkdAnoCMeS0SiHV9lChoBmgJaA9DCE0PCkoRnnBAlIaUUpRoFU0oAWgWR0CegJ5UcXFcdX2UKGgGaAloD0MIRS44g/9FcUCUhpRSlGgVTTABaBZHQJ6ApkmQbMp1fZQoaAZoCWgPQwjYvKqzWrVsQJSGlFKUaBVNRwFoFkdAnoEN29tdiXV9lChoBmgJaA9DCEdy+Q9pT3BAlIaUUpRoFU0pAWgWR0CeghwuuievdX2UKGgGaAloD0MIQQ5KmOlqcECUhpRSlGgVTQEBaBZHQJ6CyyZ8a4t1fZQoaAZoCWgPQwjB5hw8E6BxQJSGlFKUaBVNGQFoFkdAnoRB4hUzbnV9lChoBmgJaA9DCBfYYyIlhm9AlIaUUpRoFUv6aBZHQJ6EgmVqveR1fZQoaAZoCWgPQwgclZuopexvQJSGlFKUaBVNJgFoFkdAnoT2d7OVxHV9lChoBmgJaA9DCMgIqHAEP0FAlIaUUpRoFUuwaBZHQJ6Fs6dUbUB1fZQoaAZoCWgPQwjVdaimZM9wQJSGlFKUaBVNGwFoFkdAnoYx8twrD3V9lChoBmgJaA9DCFn5ZTBGBnJAlIaUUpRoFU0kAWgWR0CehkG3WnTBdX2UKGgGaAloD0MIN4yC4HECcUCUhpRSlGgVS+JoFkdAnoaE1EVnEnV9lChoBmgJaA9DCK5nCMfswHBAlIaUUpRoFUv1aBZHQJ6HLOIInjR1fZQoaAZoCWgPQwgIxyx70gJyQJSGlFKUaBVNAQFoFkdAnodEO7QLNXV9lChoBmgJaA9DCOnSvyQVTm5AlIaUUpRoFU0DAWgWR0Ceh9v6CUX6dX2UKGgGaAloD0MIJCh+jHnucUCUhpRSlGgVTT8BaBZHQJ6H7VSXMQp1fZQoaAZoCWgPQwhgdk8elmNwQJSGlFKUaBVL82gWR0CeirBZ6lchdX2UKGgGaAloD0MImUnUCz5JcECUhpRSlGgVTRABaBZHQJ6Kx0DEFW51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
lunarlander-v2_ppo_v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f9cad13c7eab463cca9a31a0beb698db44d9bc2c5752511fa76b8899f977310
3
+ size 146602
lunarlander-v2_ppo_v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
lunarlander-v2_ppo_v0/data ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7b482cbc10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7b482cbca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7b482cbd30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7b482cbdc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7b482cbe50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7b482cbee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7b482cbf70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7b482cd040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7b482cd0d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7b482cd160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7b482cd1f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7b482cd280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f7b482ce040>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678867849269562758,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": null,
59
+ "_last_episode_starts": {
60
+ ":type:": "<class 'numpy.ndarray'>",
61
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
62
+ },
63
+ "_last_original_obs": null,
64
+ "_episode_num": 0,
65
+ "use_sde": false,
66
+ "sde_sample_freq": -1,
67
+ "_current_progress_remaining": -0.015808000000000044,
68
+ "ep_info_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIi8QENbxUcUCUhpRSlIwBbJRNlgGMAXSUR0CeQDapgkTpdX2UKGgGaAloD0MI7ISX4FQJc0CUhpRSlGgVS+1oFkdAnkBKZML4OHV9lChoBmgJaA9DCHC2uTG9YXBAlIaUUpRoFU0JAWgWR0CeQZh2GIsRdX2UKGgGaAloD0MIU1vqIC+tcUCUhpRSlGgVTRYBaBZHQJ5CEISlFc91fZQoaAZoCWgPQwh6jV2iupdwQJSGlFKUaBVNPAFoFkdAnkLv0qYqonV9lChoBmgJaA9DCITU7ewr825AlIaUUpRoFU1aAWgWR0CeQ1uNgjQidX2UKGgGaAloD0MIMzLIXYQmckCUhpRSlGgVTRsBaBZHQJ5DWdpZfUp1fZQoaAZoCWgPQwijW6/pQYFzQJSGlFKUaBVL/WgWR0CeRKSPU8V6dX2UKGgGaAloD0MII0vmWB70cECUhpRSlGgVTQ4BaBZHQJ5FJbxEv011fZQoaAZoCWgPQwh2+6wyU/BtQJSGlFKUaBVNOwFoFkdAnkYmznied3V9lChoBmgJaA9DCLL2d7YHdHFAlIaUUpRoFU1HAWgWR0CeRpkAPuohdX2UKGgGaAloD0MIescpOpL+b0CUhpRSlGgVTRABaBZHQJ5HXStvGZN1fZQoaAZoCWgPQwgX8Z2YNWFwQJSGlFKUaBVNHAFoFkdAnkdkvkBCD3V9lChoBmgJaA9DCF/Tg4LSUnBAlIaUUpRoFU00AWgWR0CeR7va11GLdX2UKGgGaAloD0MI7N6KxAQDc0CUhpRSlGgVTT0BaBZHQJ5IcedTYNB1fZQoaAZoCWgPQwiOQLyu34BxQJSGlFKUaBVNMgFoFkdAnkiAh8pkPXV9lChoBmgJaA9DCAM+P4yQeHJAlIaUUpRoFU3gAWgWR0CeSLLCN0eVdX2UKGgGaAloD0MIcm2oGOcec0CUhpRSlGgVTS0BaBZHQJ5KJj/dZaF1fZQoaAZoCWgPQwioAYOkTylyQJSGlFKUaBVL7WgWR0CeSl6HCXQddX2UKGgGaAloD0MII4eIm9M6c0CUhpRSlGgVTXABaBZHQJ5K6Dxsl9l1fZQoaAZoCWgPQwig3oyar4tvQJSGlFKUaBVNOAFoFkdAnku5cTrVv3V9lChoBmgJaA9DCOhNRSqM03FAlIaUUpRoFU0PAWgWR0CeS+8iwB5pdX2UKGgGaAloD0MIK/cCswKLcUCUhpRSlGgVTUwBaBZHQJ5M+Y5T6zp1fZQoaAZoCWgPQwiYwoNm111yQJSGlFKUaBVL+2gWR0CeTQyxA0KrdX2UKGgGaAloD0MII4Wy8HWJcUCUhpRSlGgVTToBaBZHQJ5OSEh7mdR1fZQoaAZoCWgPQwgBM9/Bz6tyQJSGlFKUaBVNBwFoFkdAnk6SX6ZYxXV9lChoBmgJaA9DCPooIy6ANXJAlIaUUpRoFU0fAWgWR0CeTteKbaysdX2UKGgGaAloD0MIAS8zbBTgckCUhpRSlGgVTQUBaBZHQJ5PKl67dzp1fZQoaAZoCWgPQwiSk4lbRW9yQJSGlFKUaBVNAwFoFkdAnlBNYW+GoXV9lChoBmgJaA9DCIfguIwbWXFAlIaUUpRoFU0lAWgWR0CeUHQT238XdX2UKGgGaAloD0MIS+mZXiI9cECUhpRSlGgVTToBaBZHQJ5QsYoAn2J1fZQoaAZoCWgPQwjJ42n5gVpxQJSGlFKUaBVL5GgWR0CeUTyMkyDadX2UKGgGaAloD0MIH6FmSJUjckCUhpRSlGgVTSUBaBZHQJ5RZVS4vvl1fZQoaAZoCWgPQwiERrBxva9yQJSGlFKUaBVL/2gWR0CeUaGFzuF6dX2UKGgGaAloD0MITbwDPKkLcECUhpRSlGgVS/RoFkdAnlIsZ5zHTHV9lChoBmgJaA9DCFddh2oKTXBAlIaUUpRoFU1PAWgWR0CeUlxOLzf8dX2UKGgGaAloD0MIbw1sleC9bECUhpRSlGgVTSEBaBZHQJ5S4WRA8jl1fZQoaAZoCWgPQwgT1zGuuBhvQJSGlFKUaBVNHAFoFkdAnlPXVTaTOnV9lChoBmgJaA9DCDMzMzPzC3FAlIaUUpRoFU0cAWgWR0CeVV2t+1BudX2UKGgGaAloD0MI5V5gVqhgcUCUhpRSlGgVS+JoFkdAnlZCN4qwyXV9lChoBmgJaA9DCCXs20lEREtAlIaUUpRoFUvBaBZHQJ5XKQ8wHqx1fZQoaAZoCWgPQwgydsJLMNhxQJSGlFKUaBVNFwFoFkdAnlcuNo8IRnV9lChoBmgJaA9DCEloy7mUPW5AlIaUUpRoFU1uAWgWR0CeWNRRdhRZdX2UKGgGaAloD0MIclKY97iDbkCUhpRSlGgVTUoBaBZHQJ5udY9xIat1fZQoaAZoCWgPQwiP+1brhLdwQJSGlFKUaBVNCgFoFkdAnm6PUKArhHV9lChoBmgJaA9DCBNE3QdgdHFAlIaUUpRoFU0XAWgWR0Cebsg0CRwIdX2UKGgGaAloD0MIev8fJwwkcUCUhpRSlGgVTQcBaBZHQJ5vgvqTr3V1fZQoaAZoCWgPQwgQecvVj+dtQJSGlFKUaBVL72gWR0Ceb6RiPQv6dX2UKGgGaAloD0MIGqchqnBAbECUhpRSlGgVTQkBaBZHQJ5v3oFFDv51fZQoaAZoCWgPQwg8M8Fwro5xQJSGlFKUaBVNHwFoFkdAnnAKVyFPBXV9lChoBmgJaA9DCJ0QOugSF2tAlIaUUpRoFU19AWgWR0CecDjhUBGQdX2UKGgGaAloD0MIzox+NBzZb0CUhpRSlGgVTQMBaBZHQJ5wTLIPsiV1fZQoaAZoCWgPQwgR5KCE2ahyQJSGlFKUaBVL/GgWR0CecHZXdTHbdX2UKGgGaAloD0MIIAiQoaNvcUCUhpRSlGgVTTIBaBZHQJ5yaZNO/L11fZQoaAZoCWgPQwhihsYTwSVtQJSGlFKUaBVL92gWR0Cecqouf29MdX2UKGgGaAloD0MIYjB/hUzJbkCUhpRSlGgVTQoBaBZHQJ5zy4qgAZN1fZQoaAZoCWgPQwhzEHS06nZxQJSGlFKUaBVNBAFoFkdAnnT2thd+onV9lChoBmgJaA9DCH3nFyVoj3FAlIaUUpRoFUv6aBZHQJ51jXvphWp1fZQoaAZoCWgPQwigibDhKWlwQJSGlFKUaBVNRgFoFkdAnnYcRUWEb3V9lChoBmgJaA9DCMTuO4aHhnNAlIaUUpRoFU0tAWgWR0Ced1mOlwcYdX2UKGgGaAloD0MI6GZ/oJzbcECUhpRSlGgVTZoBaBZHQJ53Ws1baAZ1fZQoaAZoCWgPQwjbatYZ38lyQJSGlFKUaBVNDQFoFkdAnndjZg5R0nV9lChoBmgJaA9DCM9Nm3GaFW9AlIaUUpRoFU0ZAWgWR0Ced96ySmqHdX2UKGgGaAloD0MIZXCUvDrkckCUhpRSlGgVTREBaBZHQJ54DlcQiA51fZQoaAZoCWgPQwhOfSB5Z0dwQJSGlFKUaBVNTAFoFkdAnniCR0U473V9lChoBmgJaA9DCLTlXIrrKXBAlIaUUpRoFU0QAWgWR0CeeJHR1HOKdX2UKGgGaAloD0MIUwPN51zxcECUhpRSlGgVTR0BaBZHQJ54mIEbHZN1fZQoaAZoCWgPQwjisZ/F0u1tQJSGlFKUaBVNIAFoFkdAnnjBISUTtnV9lChoBmgJaA9DCBfZzvcTUHNAlIaUUpRoFU04AWgWR0CeeOBBAv+PdX2UKGgGaAloD0MIJhjONUwIckCUhpRSlGgVTQYBaBZHQJ56D668QI51fZQoaAZoCWgPQwj85ChAlJtxQJSGlFKUaBVNGAFoFkdAnnvQfZElV3V9lChoBmgJaA9DCD+QvHMoWm5AlIaUUpRoFUv5aBZHQJ58tNDc/MZ1fZQoaAZoCWgPQwg983LY/eRwQJSGlFKUaBVNaQFoFkdAnn0dv0h/zHV9lChoBmgJaA9DCME5I0q75XFAlIaUUpRoFU0wAWgWR0CeffBhhH9WdX2UKGgGaAloD0MIhzJUxRSacUCUhpRSlGgVTQ0BaBZHQJ5+iRJVbRp1fZQoaAZoCWgPQwiGjbJ+c91yQJSGlFKUaBVNVQFoFkdAnn7AVfu1GHV9lChoBmgJaA9DCLQglPfxt29AlIaUUpRoFU0dAWgWR0CefwWHk92YdX2UKGgGaAloD0MIxM4UOi+EcUCUhpRSlGgVTQkBaBZHQJ5/Gi5/b0x1fZQoaAZoCWgPQwhN9s/TANtxQJSGlFKUaBVNMQFoFkdAnn+VCPZIx3V9lChoBmgJaA9DCBh6xOi5g21AlIaUUpRoFU0gAWgWR0CegDco6S1WdX2UKGgGaAloD0MIYd14d6TocUCUhpRSlGgVTTsBaBZHQJ6AS/pMYdh1fZQoaAZoCWgPQwjQRxlxAXhwQJSGlFKUaBVNHwFoFkdAnoCMeS0SiHV9lChoBmgJaA9DCE0PCkoRnnBAlIaUUpRoFU0oAWgWR0CegJ5UcXFcdX2UKGgGaAloD0MIRS44g/9FcUCUhpRSlGgVTTABaBZHQJ6ApkmQbMp1fZQoaAZoCWgPQwjYvKqzWrVsQJSGlFKUaBVNRwFoFkdAnoEN29tdiXV9lChoBmgJaA9DCEdy+Q9pT3BAlIaUUpRoFU0pAWgWR0CeghwuuievdX2UKGgGaAloD0MIQQ5KmOlqcECUhpRSlGgVTQEBaBZHQJ6CyyZ8a4t1fZQoaAZoCWgPQwjB5hw8E6BxQJSGlFKUaBVNGQFoFkdAnoRB4hUzbnV9lChoBmgJaA9DCBfYYyIlhm9AlIaUUpRoFUv6aBZHQJ6EgmVqveR1fZQoaAZoCWgPQwgclZuopexvQJSGlFKUaBVNJgFoFkdAnoT2d7OVxHV9lChoBmgJaA9DCMgIqHAEP0FAlIaUUpRoFUuwaBZHQJ6Fs6dUbUB1fZQoaAZoCWgPQwjVdaimZM9wQJSGlFKUaBVNGwFoFkdAnoYx8twrD3V9lChoBmgJaA9DCFn5ZTBGBnJAlIaUUpRoFU0kAWgWR0CehkG3WnTBdX2UKGgGaAloD0MIN4yC4HECcUCUhpRSlGgVS+JoFkdAnoaE1EVnEnV9lChoBmgJaA9DCK5nCMfswHBAlIaUUpRoFUv1aBZHQJ6HLOIInjR1fZQoaAZoCWgPQwgIxyx70gJyQJSGlFKUaBVNAQFoFkdAnodEO7QLNXV9lChoBmgJaA9DCOnSvyQVTm5AlIaUUpRoFU0DAWgWR0Ceh9v6CUX6dX2UKGgGaAloD0MIJCh+jHnucUCUhpRSlGgVTT8BaBZHQJ6H7VSXMQp1fZQoaAZoCWgPQwhgdk8elmNwQJSGlFKUaBVL82gWR0CeirBZ6lchdX2UKGgGaAloD0MImUnUCz5JcECUhpRSlGgVTRABaBZHQJ6Kx0DEFW51ZS4="
71
+ },
72
+ "ep_success_buffer": {
73
+ ":type:": "<class 'collections.deque'>",
74
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
75
+ },
76
+ "_n_updates": 248,
77
+ "n_steps": 1024,
78
+ "gamma": 0.999,
79
+ "gae_lambda": 0.98,
80
+ "ent_coef": 0.01,
81
+ "vf_coef": 0.5,
82
+ "max_grad_norm": 0.5,
83
+ "batch_size": 64,
84
+ "n_epochs": 4,
85
+ "clip_range": {
86
+ ":type:": "<class 'function'>",
87
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
88
+ },
89
+ "clip_range_vf": null,
90
+ "normalize_advantage": true,
91
+ "target_kl": null
92
+ }
lunarlander-v2_ppo_v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2c84441814599ab816449da9a62ad2aae683f1a76245ee2e62ba468a5abfeef
3
+ size 88057
lunarlander-v2_ppo_v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cac313b8ac2bbaa4febce95ce548162978da3b7be07ac2a47095169caccdc22
3
+ size 43393
lunarlander-v2_ppo_v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunarlander-v2_ppo_v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cda84b4c6ac65ab75b37d0a3dff31a388ffd5789f6f331844633032553879160
3
+ size 2511166
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 269.75691599999993, "std_reward": 17.595361166035815, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-15T09:07:05.333428"}