File size: 6,101 Bytes
90a2ba5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d299dce
 
 
90a2ba5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d299dce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90a2ba5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import json
import os

import torch
import torch.nn as nn

from functools import partial
from mamba_ssm.modules.mamba_simple import Block, Mamba
from transformers import PretrainedConfig, PreTrainedModel


class OrthrusConfig(PretrainedConfig):
    """HuggingFace config for pre-trained Orthrus model."""

    model_type = "orthrus"

    def __init__(
        self,
        n_tracks: int = 4,
        ssm_model_dim: int = 256,
        ssm_n_layers: int = 3,
        **kwargs
    ):
        """Initialize OrthrusConfig.

        Args:
            n_tracks: Number of data tracks.
            ssm_model_dim: Hidden dimension of Mamba backbone.
            ssm_n_layers: Number of layers in Mamba backbone.
        """
        self.n_tracks = n_tracks
        self.ssm_model_dim = ssm_model_dim
        self.ssm_n_layers = ssm_n_layers
        super().__init__(**kwargs)

    @classmethod
    def init_from_config(cls, config_dir_path: str) -> "OrthrusConfig":
        """Load config from pretraining config files.

        Args:
            config_dir_path: Path to folder with pretraining configs.
        """
        model_config_path = os.path.join(config_dir_path, "model_config.json")
        data_config_path = os.path.join(config_dir_path, "data_config.json")

        with open(model_config_path, "r") as f:
            model_params = json.load(f)

        if "n_tracks" not in model_params:
            with open(data_config_path, "r") as f:
                data_params = json.load(f)
            n_tracks = data_params["n_tracks"]
        else:
            n_tracks = model_params["n_tracks"]

        return cls(
            n_tracks=n_tracks,
            ssm_model_dim=model_params["ssm_model_dim"],
            ssm_n_layers=model_params["ssm_n_layers"]
        )


class OrthrusPretrainedModel(PreTrainedModel):
    """HuggingFace wrapper for a pretrained Orthrus model."""

    config_class = OrthrusConfig
    base_model_prefix = "orthrus"

    def __init__(self, config: OrthrusConfig, **kwargs):
        """Initialize OrthrusPretrainedModel.

        Args:
            config: Model configs.
        """
        super().__init__(config, **kwargs)

        self.config = config
        self.embedding = nn.Linear(
            config.n_tracks,
            config.ssm_model_dim,
        )

        self.layers = nn.ModuleList(
            [
                self.create_block(
                    config.ssm_model_dim,
                    layer_idx=i,
                )
                for i in range(config.ssm_n_layers)
            ]
        )

        self.norm_f = nn.LayerNorm(config.ssm_model_dim)

    def create_block(
        self,
        d_model: int,
        layer_idx: int | None = None
    ) -> Block:
        """Create Mamba Block.

        Args:
            d_model: Hidden dimension of Mamba blocks.
            layer_idx: Index of current Mamba block in stack.

        Returns:
            Initialized Mamba block.
        """
        mix_cls = partial(Mamba, layer_idx=layer_idx)
        norm_cls = nn.LayerNorm
        block = Block(
            d_model,
            mix_cls,
            norm_cls=norm_cls,
        )
        block.layer_idx = layer_idx
        return block

    def forward(
        self,
        x: torch.Tensor,
        channel_last: bool = False
    ) -> torch.Tensor:
        """Perform Orthrus forward pass.

        Args:
            x: Input data. Shape (B x C x L) or (B x L x C) if channel_last.
            channel_last: Whether channel dimension is last dimension.

        Returns:
            Position-wise Orthrus embedding with shape (B x L x C).
        """
        if not channel_last:
            x = x.transpose(1, 2)

        hidden_states = self.embedding(x)
        res = None
        for layer in self.layers:
            hidden_states, res = layer(hidden_states, res)

        res = (hidden_states + res) if res is not None else hidden_states
        hidden_states = self.norm_f(res.to(dtype=self.norm_f.weight.dtype))

        return hidden_states

    def representation(
        self,
        x: torch.Tensor,
        lengths: torch.Tensor,
        channel_last: bool = False,
    ) -> torch.Tensor:
        """Get global representation of input data.

        Representation is pooled across length dimension.

        Args:
            x: Data to embed. Has shape (B x C x L) if not channel_last.
            lengths: Unpadded length of each data input.
            channel_last: Expects input of shape (B x L x C).

        Returns:
            Global representation vector of shape (B x H).
        """
        out = self.forward(x, channel_last=channel_last)

        mean_tensor = self.mean_unpadded(out, lengths)
        return mean_tensor

    def seq_to_oh(self, seq: list[str]) -> torch.Tensor:
        """Convert nucleotide string into one-hot-encoding.

        The encoding uses ordering ["A", "C", "G", "T"].

        Args:
            seq: Sequence to encode.

        Returns:
            One hot encoded sequence, with shape (L x 4).
        """
        oh = torch.zeros((len(seq), 4), dtype=torch.float32)
        for i, base in enumerate(seq):
            if base == "A":
                oh[i, 0] = 1
            elif base == "C":
                oh[i, 1] = 1
            elif base == "G":
                oh[i, 2] = 1
            elif base == "T":
                oh[i, 3] = 1
        return oh

    def mean_unpadded(
        self,
        x: torch.Tensor,
        lengths: torch.Tensor
    ) -> torch.Tensor:
        """Take mean of tensor across second dimension without padding.

        Args:
            x: Tensor to take unpadded mean. Has shape (B x L x H).
            lengths: Tensor of unpadded lengths. Has shape (B)

        Returns:
            Mean tensor of shape (B x H).
        """
        mask = torch.arange(
            x.size(1),
            device=x.device
        )[None, :] < lengths[:, None]
        masked_tensor = x * mask.unsqueeze(-1)
        sum_tensor = masked_tensor.sum(dim=1)
        mean_tensor = sum_tensor / lengths.unsqueeze(-1).float()

        return mean_tensor