File size: 10,730 Bytes
71d05bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#%%
import AnomalyCLIP_lib
import torch
import argparse
import torch.nn.functional as F
from training_libs.prompt_ensemble import AnomalyCLIP_PromptLearner
from training_libs.loss import FocalLoss, BinaryDiceLoss
from training_libs.utils import normalize
from training_libs.dataset import Dataset_test
from training_libs.logger import get_logger
from tqdm import tqdm

import os
import random
import numpy as np
from tabulate import tabulate
from training_libs.utils import get_transform

def setup_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

from training_libs.visualization import visualizer

from training_libs.metrics import image_level_metrics, pixel_level_metrics
from tqdm import tqdm
from scipy.ndimage import gaussian_filter


def test(args):
    img_size = args.image_size
    features_list = args.features_list
    dataset_dir = args.data_path
    save_path = args.save_path
    dataset_name = args.dataset

    logger = get_logger(args.save_path)
    device = "cuda" if torch.cuda.is_available() else "cpu"
    # device = "gpu"

    AnomalyCLIP_parameters = {"Prompt_length": args.n_ctx, "learnabel_text_embedding_depth": args.depth, "learnabel_text_embedding_length": args.t_n_ctx}
    model, _ = AnomalyCLIP_lib.load("pre-trained models/clip/ViT-B-32.pt", device=device, design_details = AnomalyCLIP_parameters)
    model.eval()
    # torch.save(model.state_dict(),"pre-trained models/clip")

    preprocess, target_transform = get_transform(args)
    test_data = Dataset_test(root=args.data_path, transform=preprocess, target_transform=target_transform, dataset_name = args.dataset)
    test_dataloader = torch.utils.data.DataLoader(test_data, batch_size=1, shuffle=False)
    obj_list = test_data.obj_list


    results = {}
    metrics = {}
    for obj in obj_list:
        results[obj] = {}
        results[obj]['gt_sp'] = []
        results[obj]['pr_sp'] = []
        results[obj]['imgs_masks'] = []
        results[obj]['anomaly_maps'] = []
        metrics[obj] = {}
        metrics[obj]['pixel-auroc'] = 0
        metrics[obj]['pixel-aupro'] = 0
        metrics[obj]['image-auroc'] = 0
        metrics[obj]['image-ap'] = 0

    prompt_learner = AnomalyCLIP_PromptLearner(model.to(device=device), AnomalyCLIP_parameters)
    
    
    #Add check-point from trained model with normal images
    # checkpoint = torch.load("checkpoint/241120_SP_DPAM_13_518/epoch_500.pth",map_location=torch.device('cpu'))
    # prompt_learner.load_state_dict(checkpoint["prompt_learner"])


    #Add check-point from trained model with normal images
    # checkpoint = torch.load(args.checkpoint_path,map_location=torch.device(device=device))
    # prompt_learner.load_state_dict(checkpoint["prompt_learner"])


    prompt_learner.to(device)
    model.to(device)
    model.visual.DAPM_replace(DPAM_layer = 13)

    prompts, tokenized_prompts, compound_prompts_text = prompt_learner(cls_id = None)
    print("print(prompts)")
    print(prompts)



    text_features = model.encode_text_learn(prompts, tokenized_prompts, compound_prompts_text).float()
    text_features = torch.stack(torch.chunk(text_features, dim = 0, chunks = 2), dim = 1)
    text_features = text_features/text_features.norm(dim=-1, keepdim=True)
  
    

    model.to(device)
    for idx, items in enumerate(tqdm(test_dataloader)):
        image = items['img'].to(device)
        cls_name = items['cls_name']
        cls_id = items['cls_id']
        
        gt_mask_initial = items['img_mask']
        #convert gt mask to good (0) and anomaly (1)
        gt_mask = items['img_mask']
        gt_mask[gt_mask > 0.5], gt_mask[gt_mask <= 0.5] = 1, 0


        results[cls_name[0]]['imgs_masks'].append(gt_mask)  # px
        results[cls_name[0]]['gt_sp'].extend(items['anomaly'].detach().cpu())

        with torch.no_grad():
            image_features, patch_features = model.encode_image(image, features_list, DPAM_layer = 20)
            image_features = image_features / image_features.norm(dim=-1, keepdim=True)

            text_probs = image_features @ text_features.permute(0, 2, 1)
            text_probs = (text_probs/0.07).softmax(-1)
            text_probs = text_probs[:, 0, 1]
            anomaly_map_list = []
            for idx, patch_feature in enumerate(patch_features):
                if idx >= args.feature_map_layer[0]:
                    patch_feature = patch_feature/ patch_feature.norm(dim = -1, keepdim = True)
                    similarity, _ = AnomalyCLIP_lib.compute_similarity(patch_feature, text_features[0])
                    similarity_map = AnomalyCLIP_lib.get_similarity_map(similarity[:, 1:, :], args.image_size)
                    anomaly_map = (similarity_map[...,1] + 1 - similarity_map[...,0])/2.0
                    anomaly_map_list.append(anomaly_map)

            anomaly_map = torch.stack(anomaly_map_list)
            
            anomaly_map = anomaly_map.sum(dim = 0)
            results[cls_name[0]]['pr_sp'].extend(text_probs.detach().cpu())
            anomaly_map = torch.stack([torch.from_numpy(gaussian_filter(i, sigma = args.sigma)) for i in anomaly_map.detach().cpu()], dim = 0 )
            results[cls_name[0]]['anomaly_maps'].append(anomaly_map)

            #Save the anomaly map images
            visualizer(items['img_path'], anomaly_map.detach().cpu().numpy(), args.image_size, args.save_path, cls_name)
    
    print("print(results)")
    torch.save(results,"results/results_shinpyung_0.pt")
    # print(results)

    table_ls = []
    image_auroc_list = []
    image_ap_list = []
    pixel_auroc_list = []
    pixel_aupro_list = []
    for obj in obj_list:
        table = []
        table.append(obj)
        results[obj]['imgs_masks'] = torch.cat(results[obj]['imgs_masks'])
        results[obj]['anomaly_maps'] = torch.cat(results[obj]['anomaly_maps']).detach().cpu().numpy()
        if args.metrics == 'image-level':
            image_auroc = image_level_metrics(results, obj, "image-auroc")
            image_ap = image_level_metrics(results, obj, "image-ap")
            table.append(str(np.round(image_auroc * 100, decimals=1)))
            table.append(str(np.round(image_ap * 100, decimals=1)))
            image_auroc_list.append(image_auroc)
            image_ap_list.append(image_ap) 
        elif args.metrics == 'pixel-level':
            pixel_auroc = pixel_level_metrics(results, obj, "pixel-auroc")
            pixel_aupro = pixel_level_metrics(results, obj, "pixel-aupro")
            table.append(str(np.round(pixel_auroc * 100, decimals=1)))
            table.append(str(np.round(pixel_aupro * 100, decimals=1)))
            pixel_auroc_list.append(pixel_auroc)
            pixel_aupro_list.append(pixel_aupro)
        elif args.metrics == 'image-pixel-level':
            image_auroc = image_level_metrics(results, obj, "image-auroc")
            image_ap = image_level_metrics(results, obj, "image-ap")
            pixel_auroc = pixel_level_metrics(results, obj, "pixel-auroc")
            pixel_aupro = pixel_level_metrics(results, obj, "pixel-aupro")
            table.append(str(np.round(pixel_auroc * 100, decimals=1)))
            table.append(str(np.round(pixel_aupro * 100, decimals=1)))
            table.append(str(np.round(image_auroc * 100, decimals=1)))
            table.append(str(np.round(image_ap * 100, decimals=1)))
            image_auroc_list.append(image_auroc)
            image_ap_list.append(image_ap) 
            pixel_auroc_list.append(pixel_auroc)
            pixel_aupro_list.append(pixel_aupro)
        table_ls.append(table)

    if args.metrics == 'image-level':
        # logger
        table_ls.append(['mean', 
                        str(np.round(np.mean(image_auroc_list) * 100, decimals=1)),
                        str(np.round(np.mean(image_ap_list) * 100, decimals=1))])
        results = tabulate(table_ls, headers=['objects', 'image_auroc', 'image_ap'], tablefmt="pipe")
    elif args.metrics == 'pixel-level':
        # logger
        table_ls.append(['mean', str(np.round(np.mean(pixel_auroc_list) * 100, decimals=1)),
                        str(np.round(np.mean(pixel_aupro_list) * 100, decimals=1))
                       ])
        results = tabulate(table_ls, headers=['objects', 'pixel_auroc', 'pixel_aupro'], tablefmt="pipe")
    elif args.metrics == 'image-pixel-level':
        # logger
        table_ls.append(['mean', str(np.round(np.mean(pixel_auroc_list) * 100, decimals=1)),
                        str(np.round(np.mean(pixel_aupro_list) * 100, decimals=1)), 
                        str(np.round(np.mean(image_auroc_list) * 100, decimals=1)),
                        str(np.round(np.mean(image_ap_list) * 100, decimals=1))])
        results = tabulate(table_ls, headers=['objects', 'pixel_auroc', 'pixel_aupro', 'image_auroc', 'image_ap'], tablefmt="pipe")
    logger.info("\n%s", results)


if __name__ == '__main__':
    parser = argparse.ArgumentParser("AnomalyCLIP", add_help=True)
    # paths
    parser.add_argument("--data_path", type=str, default="./data/4inlab/", help="path to test dataset")
    parser.add_argument("--save_path", type=str, default='./results/', help='path to save results')
    parser.add_argument("--checkpoint_path", type=str, default='./checkpoint/241122_SP_DPAM_13_518', help='path to checkpoint')
    # model
    parser.add_argument("--dataset", type=str, default='4inlab')
    parser.add_argument("--image_size", type=int, default=518, help="image size")
    parser.add_argument("--depth", type=int, default=9, help="image size")
    parser.add_argument("--n_ctx", type=int, default=12, help="zero shot")
    parser.add_argument("--t_n_ctx", type=int, default=4, help="zero shot")
    parser.add_argument("--metrics", type=str, default='image-pixel-level')
    parser.add_argument("--seed", type=int, default=111, help="random seed")
    parser.add_argument("--sigma", type=int, default=4, help="zero shot")
        # Specify layers from which feature maps will be extracted (can pass multiple values)
    parser.add_argument("--feature_map_layer", type=int, nargs="+", default=[0, 1, 2, 3], help="zero shot")
    
    # List of layers whose features will be used
    parser.add_argument("--features_list", type=int, nargs="+", default=[6, 12, 18, 24], help="features used")

    
    args = parser.parse_args()
    print(args)
    setup_seed(args.seed)
    test(args)
#%%