File size: 5,950 Bytes
741855d c0a6511 59b4459 741855d 2a9c406 c0a6511 71d3e9e 741855d 4235dca 741855d c29f247 4235dca bacdb33 4235dca 741855d a734065 741855d c29f247 4235dca c29f247 741855d c29f247 741855d c29f247 741855d c29f247 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
library_name: pytorch
license: gpl-3.0
pipeline_tag: object-detection
tags:
- real_time
- quantized
- android
---

# Yolo-v7-Quantized: Optimized for Mobile Deployment
## Quantized real-time object detection optimized for mobile and edge
YoloV7 is a machine learning model that predicts bounding boxes and classes of objects in an image. This model is post-training quantized to int8 using samples from the COCO dataset.
This model is an implementation of Yolo-v7-Quantized found [here](https://github.com/WongKinYiu/yolov7/).
More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/yolov7_quantized).
### Model Details
- **Model Type:** Object detection
- **Model Stats:**
- Model checkpoint: YoloV7 Tiny
- Input resolution: 640x640
- Number of parameters: 6.24M
- Model size: 6.23 MB
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| Yolo-v7-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 4.48 ms | 0 - 11 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 5.432 ms | 0 - 10 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 6.272 ms | 0 - 51 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 2.905 ms | 0 - 45 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 3.584 ms | 1 - 58 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 4.207 ms | 1 - 101 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 2.99 ms | 0 - 40 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 3.157 ms | 1 - 55 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 3.641 ms | 1 - 93 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 11.977 ms | 0 - 54 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 14.834 ms | 1 - 13 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 56.215 ms | 15 - 54 MB | INT8 | GPU | -- |
| Yolo-v7-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 4.477 ms | 0 - 11 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 4.431 ms | 1 - 4 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | SA7255P ADP | SA7255P | TFLITE | 19.699 ms | 0 - 32 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | SA7255P ADP | SA7255P | QNN | 20.071 ms | 1 - 10 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 4.467 ms | 0 - 11 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 4.448 ms | 1 - 4 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | SA8295P ADP | SA8295P | TFLITE | 6.163 ms | 0 - 41 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | SA8295P ADP | SA8295P | QNN | 6.018 ms | 1 - 15 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 4.462 ms | 0 - 11 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 4.49 ms | 1 - 4 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | SA8775P ADP | SA8775P | TFLITE | 6.197 ms | 0 - 32 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | SA8775P ADP | SA8775P | QNN | 6.464 ms | 1 - 11 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 5.152 ms | 0 - 48 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 5.085 ms | 1 - 62 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 4.895 ms | 1 - 1 MB | INT8 | NPU | -- |
| Yolo-v7-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.031 ms | 8 - 8 MB | INT8 | NPU | -- |
## License
* The license for the original implementation of Yolo-v7-Quantized can be found
[here](https://github.com/WongKinYiu/yolov7/blob/main/LICENSE.md).
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/WongKinYiu/yolov7/blob/main/LICENSE.md)
## References
* [YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://arxiv.org/abs/2207.02696)
* [Source Model Implementation](https://github.com/WongKinYiu/yolov7/)
## Community
* Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).
## Usage and Limitations
Model may not be used for or in connection with any of the following applications:
- Accessing essential private and public services and benefits;
- Administration of justice and democratic processes;
- Assessing or recognizing the emotional state of a person;
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
- Education and vocational training;
- Employment and workers management;
- Exploitation of the vulnerabilities of persons resulting in harmful behavior;
- General purpose social scoring;
- Law enforcement;
- Management and operation of critical infrastructure;
- Migration, asylum and border control management;
- Predictive policing;
- Real-time remote biometric identification in public spaces;
- Recommender systems of social media platforms;
- Scraping of facial images (from the internet or otherwise); and/or
- Subliminal manipulation
|