File size: 16,438 Bytes
ef427ac
 
 
6d7dbd1
ef427ac
 
 
 
 
e8a849c
ef427ac
 
 
 
79b3898
ef427ac
 
238714d
79b3898
 
ef427ac
 
 
 
 
 
 
6d7dbd1
ef427ac
 
 
 
 
 
 
 
5291c19
 
9b1fa5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef427ac
9d8ef57
 
ef427ac
 
 
 
9b1fa5c
ef427ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8285fbc
5291c19
 
 
 
 
aa988ea
9b1fa5c
5291c19
 
2bc5d1f
 
 
 
 
9b1fa5c
 
2bc5d1f
 
8285fbc
9d8ef57
 
ef427ac
 
9d8ef57
ef427ac
 
 
 
 
 
 
 
 
 
 
 
aa988ea
ef427ac
 
aa988ea
 
2bc5d1f
8285fbc
ef427ac
 
 
8285fbc
2bc5d1f
 
8285fbc
2bc5d1f
8285fbc
 
2bc5d1f
 
8285fbc
2bc5d1f
8285fbc
 
 
2bc5d1f
ef427ac
2bc5d1f
 
ef427ac
2bc5d1f
ef427ac
 
2bc5d1f
 
ef427ac
2bc5d1f
ef427ac
 
 
2bc5d1f
ef427ac
 
 
 
 
 
 
 
 
 
 
8285fbc
14bfc29
 
 
2bc5d1f
 
 
 
ef427ac
 
 
 
 
 
 
 
8285fbc
 
14bfc29
 
 
 
8285fbc
2bc5d1f
 
 
 
 
 
 
ef427ac
 
 
 
 
 
e8a849c
ef427ac
 
 
9d8ef57
ef427ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5291c19
ef427ac
9b1fa5c
 
5291c19
 
 
ef427ac
 
 
 
 
5291c19
 
ef427ac
4332354
ef427ac
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
---
library_name: pytorch
license: mit
pipeline_tag: image-to-text
tags:
- android

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/trocr/web-assets/model_demo.png)

# TrOCR: Optimized for Mobile Deployment
## Transformer based model for state-of-the-art optical character recognition (OCR) on both printed and handwritten text


End-to-end text recognition approach with pre-trained image transformer and text transformer models for both image understanding and wordpiece-level text generation.

This model is an implementation of TrOCR found [here](https://huggingface.co/microsoft/trocr-small-stage1).


This repository provides scripts to run TrOCR on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/trocr).


### Model Details

- **Model Type:** Image to text
- **Model Stats:**
  - Model checkpoint: trocr-small-stage1
  - Input resolution: 320x320
  - Number of parameters (TrOCREncoder): 23.0M
  - Model size (TrOCREncoder): 87.8 MB
  - Number of parameters (TrOCRDecoder): 38.3M
  - Model size (TrOCRDecoder): 146 MB

| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| TrOCRDecoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 2.193 ms | 0 - 351 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 2.388 ms | 2 - 72 MB | FP16 | NPU | [TrOCR.so](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.so) |
| TrOCRDecoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 2.904 ms | 0 - 179 MB | FP16 | NPU | [TrOCR.onnx](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.onnx) |
| TrOCRDecoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 1.554 ms | 0 - 52 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 1.796 ms | 0 - 53 MB | FP16 | NPU | [TrOCR.so](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.so) |
| TrOCRDecoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 2.453 ms | 0 - 62 MB | FP16 | NPU | [TrOCR.onnx](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.onnx) |
| TrOCRDecoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 1.515 ms | 0 - 47 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 1.603 ms | 1 - 49 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 1.733 ms | 1 - 48 MB | FP16 | NPU | [TrOCR.onnx](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.onnx) |
| TrOCRDecoder | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 2.227 ms | 0 - 120 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 2.279 ms | 2 - 5 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | SA7255P ADP | SA7255P | TFLITE | 12.101 ms | 0 - 44 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | SA7255P ADP | SA7255P | QNN | 12.355 ms | 7 - 15 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 2.18 ms | 0 - 364 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | SA8255 (Proxy) | SA8255P Proxy | QNN | 2.29 ms | 2 - 4 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | SA8295P ADP | SA8295P | TFLITE | 3.149 ms | 0 - 44 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | SA8295P ADP | SA8295P | QNN | 3.287 ms | 7 - 21 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 2.285 ms | 0 - 348 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 2.288 ms | 1 - 4 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | SA8775P ADP | SA8775P | TFLITE | 3.394 ms | 0 - 44 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | SA8775P ADP | SA8775P | QNN | 3.511 ms | 7 - 17 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 2.702 ms | 0 - 47 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 2.793 ms | 5 - 54 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 2.483 ms | 7 - 7 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 2.688 ms | 68 - 68 MB | FP16 | NPU | [TrOCR.onnx](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.onnx) |
| TrOCREncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 50.556 ms | 7 - 31 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 52.318 ms | 2 - 21 MB | FP16 | NPU | [TrOCR.so](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.so) |
| TrOCREncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 37.972 ms | 14 - 158 MB | FP16 | NPU | [TrOCR.onnx](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.onnx) |
| TrOCREncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 39.483 ms | 6 - 69 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 40.727 ms | 2 - 65 MB | FP16 | NPU | [TrOCR.so](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.so) |
| TrOCREncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 32.375 ms | 16 - 77 MB | FP16 | NPU | [TrOCR.onnx](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.onnx) |
| TrOCREncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 35.24 ms | 5 - 69 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 33.856 ms | 2 - 67 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 27.536 ms | 16 - 78 MB | FP16 | NPU | [TrOCR.onnx](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.onnx) |
| TrOCREncoder | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 50.422 ms | 7 - 31 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 37.115 ms | 2 - 5 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | SA7255P ADP | SA7255P | TFLITE | 266.414 ms | 7 - 69 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | SA7255P ADP | SA7255P | QNN | 247.903 ms | 2 - 11 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 50.495 ms | 7 - 28 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | SA8255 (Proxy) | SA8255P Proxy | QNN | 37.4 ms | 2 - 4 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | SA8295P ADP | SA8295P | TFLITE | 65.319 ms | 4 - 64 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | SA8295P ADP | SA8295P | QNN | 51.358 ms | 2 - 16 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 50.622 ms | 7 - 34 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 37.215 ms | 2 - 5 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | SA8775P ADP | SA8775P | TFLITE | 59.798 ms | 7 - 69 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | SA8775P ADP | SA8775P | QNN | 42.33 ms | 2 - 12 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 60.378 ms | 7 - 67 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 64.062 ms | 2 - 64 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 34.073 ms | 2 - 2 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 36.772 ms | 51 - 51 MB | FP16 | NPU | [TrOCR.onnx](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.onnx) |




## Installation


Install the package via pip:
```bash
pip install "qai-hub-models[trocr]"
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.trocr.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.trocr.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.trocr.export
```
```
Profiling Results
------------------------------------------------------------
TrOCRDecoder
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 2.2                    
Estimated peak memory usage (MB): [0, 351]               
Total # Ops                     : 399                    
Compute Unit(s)                 : NPU (399 ops)          

------------------------------------------------------------
TrOCREncoder
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 50.6                   
Estimated peak memory usage (MB): [7, 31]                
Total # Ops                     : 591                    
Compute Unit(s)                 : NPU (591 ops)          
```


## How does this work?

This [export script](https://aihub.qualcomm.com/models/trocr/qai_hub_models/models/TrOCR/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.trocr import Model

# Load the model
model = Model.from_pretrained()
decoder_model = model.decoder
encoder_model = model.encoder

# Device
device = hub.Device("Samsung Galaxy S23")

# Trace model
decoder_input_shape = decoder_model.get_input_spec()
decoder_sample_inputs = decoder_model.sample_inputs()

traced_decoder_model = torch.jit.trace(decoder_model, [torch.tensor(data[0]) for _, data in decoder_sample_inputs.items()])

# Compile model on a specific device
decoder_compile_job = hub.submit_compile_job(
    model=traced_decoder_model ,
    device=device,
    input_specs=decoder_model.get_input_spec(),
)

# Get target model to run on-device
decoder_target_model = decoder_compile_job.get_target_model()
# Trace model
encoder_input_shape = encoder_model.get_input_spec()
encoder_sample_inputs = encoder_model.sample_inputs()

traced_encoder_model = torch.jit.trace(encoder_model, [torch.tensor(data[0]) for _, data in encoder_sample_inputs.items()])

# Compile model on a specific device
encoder_compile_job = hub.submit_compile_job(
    model=traced_encoder_model ,
    device=device,
    input_specs=encoder_model.get_input_spec(),
)

# Get target model to run on-device
encoder_target_model = encoder_compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
decoder_profile_job = hub.submit_profile_job(
    model=decoder_target_model,
    device=device,
)
encoder_profile_job = hub.submit_profile_job(
    model=encoder_target_model,
    device=device,
)

```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
decoder_input_data = decoder_model.sample_inputs()
decoder_inference_job = hub.submit_inference_job(
    model=decoder_target_model,
    device=device,
    inputs=decoder_input_data,
)
decoder_inference_job.download_output_data()
encoder_input_data = encoder_model.sample_inputs()
encoder_inference_job = hub.submit_inference_job(
    model=encoder_target_model,
    device=device,
    inputs=encoder_input_data,
)
encoder_inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).




## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on TrOCR's performance across various devices [here](https://aihub.qualcomm.com/models/trocr).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of TrOCR can be found
  [here](https://github.com/microsoft/unilm/blob/master/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282)
* [Source Model Implementation](https://huggingface.co/microsoft/trocr-small-stage1)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).