File size: 16,438 Bytes
ef427ac 6d7dbd1 ef427ac e8a849c ef427ac 79b3898 ef427ac 238714d 79b3898 ef427ac 6d7dbd1 ef427ac 5291c19 9b1fa5c ef427ac 9d8ef57 ef427ac 9b1fa5c ef427ac 8285fbc 5291c19 aa988ea 9b1fa5c 5291c19 2bc5d1f 9b1fa5c 2bc5d1f 8285fbc 9d8ef57 ef427ac 9d8ef57 ef427ac aa988ea ef427ac aa988ea 2bc5d1f 8285fbc ef427ac 8285fbc 2bc5d1f 8285fbc 2bc5d1f 8285fbc 2bc5d1f 8285fbc 2bc5d1f 8285fbc 2bc5d1f ef427ac 2bc5d1f ef427ac 2bc5d1f ef427ac 2bc5d1f ef427ac 2bc5d1f ef427ac 2bc5d1f ef427ac 8285fbc 14bfc29 2bc5d1f ef427ac 8285fbc 14bfc29 8285fbc 2bc5d1f ef427ac e8a849c ef427ac 9d8ef57 ef427ac 5291c19 ef427ac 9b1fa5c 5291c19 ef427ac 5291c19 ef427ac 4332354 ef427ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
---
library_name: pytorch
license: mit
pipeline_tag: image-to-text
tags:
- android
---

# TrOCR: Optimized for Mobile Deployment
## Transformer based model for state-of-the-art optical character recognition (OCR) on both printed and handwritten text
End-to-end text recognition approach with pre-trained image transformer and text transformer models for both image understanding and wordpiece-level text generation.
This model is an implementation of TrOCR found [here](https://huggingface.co/microsoft/trocr-small-stage1).
This repository provides scripts to run TrOCR on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/trocr).
### Model Details
- **Model Type:** Image to text
- **Model Stats:**
- Model checkpoint: trocr-small-stage1
- Input resolution: 320x320
- Number of parameters (TrOCREncoder): 23.0M
- Model size (TrOCREncoder): 87.8 MB
- Number of parameters (TrOCRDecoder): 38.3M
- Model size (TrOCRDecoder): 146 MB
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| TrOCRDecoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 2.193 ms | 0 - 351 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 2.388 ms | 2 - 72 MB | FP16 | NPU | [TrOCR.so](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.so) |
| TrOCRDecoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 2.904 ms | 0 - 179 MB | FP16 | NPU | [TrOCR.onnx](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.onnx) |
| TrOCRDecoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 1.554 ms | 0 - 52 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 1.796 ms | 0 - 53 MB | FP16 | NPU | [TrOCR.so](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.so) |
| TrOCRDecoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 2.453 ms | 0 - 62 MB | FP16 | NPU | [TrOCR.onnx](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.onnx) |
| TrOCRDecoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 1.515 ms | 0 - 47 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 1.603 ms | 1 - 49 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 1.733 ms | 1 - 48 MB | FP16 | NPU | [TrOCR.onnx](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.onnx) |
| TrOCRDecoder | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 2.227 ms | 0 - 120 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 2.279 ms | 2 - 5 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | SA7255P ADP | SA7255P | TFLITE | 12.101 ms | 0 - 44 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | SA7255P ADP | SA7255P | QNN | 12.355 ms | 7 - 15 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 2.18 ms | 0 - 364 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | SA8255 (Proxy) | SA8255P Proxy | QNN | 2.29 ms | 2 - 4 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | SA8295P ADP | SA8295P | TFLITE | 3.149 ms | 0 - 44 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | SA8295P ADP | SA8295P | QNN | 3.287 ms | 7 - 21 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 2.285 ms | 0 - 348 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 2.288 ms | 1 - 4 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | SA8775P ADP | SA8775P | TFLITE | 3.394 ms | 0 - 44 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | SA8775P ADP | SA8775P | QNN | 3.511 ms | 7 - 17 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 2.702 ms | 0 - 47 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 2.793 ms | 5 - 54 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 2.483 ms | 7 - 7 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 2.688 ms | 68 - 68 MB | FP16 | NPU | [TrOCR.onnx](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.onnx) |
| TrOCREncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 50.556 ms | 7 - 31 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 52.318 ms | 2 - 21 MB | FP16 | NPU | [TrOCR.so](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.so) |
| TrOCREncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 37.972 ms | 14 - 158 MB | FP16 | NPU | [TrOCR.onnx](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.onnx) |
| TrOCREncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 39.483 ms | 6 - 69 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 40.727 ms | 2 - 65 MB | FP16 | NPU | [TrOCR.so](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.so) |
| TrOCREncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 32.375 ms | 16 - 77 MB | FP16 | NPU | [TrOCR.onnx](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.onnx) |
| TrOCREncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 35.24 ms | 5 - 69 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 33.856 ms | 2 - 67 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 27.536 ms | 16 - 78 MB | FP16 | NPU | [TrOCR.onnx](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.onnx) |
| TrOCREncoder | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 50.422 ms | 7 - 31 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 37.115 ms | 2 - 5 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | SA7255P ADP | SA7255P | TFLITE | 266.414 ms | 7 - 69 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | SA7255P ADP | SA7255P | QNN | 247.903 ms | 2 - 11 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 50.495 ms | 7 - 28 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | SA8255 (Proxy) | SA8255P Proxy | QNN | 37.4 ms | 2 - 4 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | SA8295P ADP | SA8295P | TFLITE | 65.319 ms | 4 - 64 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | SA8295P ADP | SA8295P | QNN | 51.358 ms | 2 - 16 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 50.622 ms | 7 - 34 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 37.215 ms | 2 - 5 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | SA8775P ADP | SA8775P | TFLITE | 59.798 ms | 7 - 69 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | SA8775P ADP | SA8775P | QNN | 42.33 ms | 2 - 12 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 60.378 ms | 7 - 67 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 64.062 ms | 2 - 64 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 34.073 ms | 2 - 2 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 36.772 ms | 51 - 51 MB | FP16 | NPU | [TrOCR.onnx](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.onnx) |
## Installation
Install the package via pip:
```bash
pip install "qai-hub-models[trocr]"
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.trocr.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.trocr.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.trocr.export
```
```
Profiling Results
------------------------------------------------------------
TrOCRDecoder
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 2.2
Estimated peak memory usage (MB): [0, 351]
Total # Ops : 399
Compute Unit(s) : NPU (399 ops)
------------------------------------------------------------
TrOCREncoder
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 50.6
Estimated peak memory usage (MB): [7, 31]
Total # Ops : 591
Compute Unit(s) : NPU (591 ops)
```
## How does this work?
This [export script](https://aihub.qualcomm.com/models/trocr/qai_hub_models/models/TrOCR/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:
Step 1: **Compile model for on-device deployment**
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.
```python
import torch
import qai_hub as hub
from qai_hub_models.models.trocr import Model
# Load the model
model = Model.from_pretrained()
decoder_model = model.decoder
encoder_model = model.encoder
# Device
device = hub.Device("Samsung Galaxy S23")
# Trace model
decoder_input_shape = decoder_model.get_input_spec()
decoder_sample_inputs = decoder_model.sample_inputs()
traced_decoder_model = torch.jit.trace(decoder_model, [torch.tensor(data[0]) for _, data in decoder_sample_inputs.items()])
# Compile model on a specific device
decoder_compile_job = hub.submit_compile_job(
model=traced_decoder_model ,
device=device,
input_specs=decoder_model.get_input_spec(),
)
# Get target model to run on-device
decoder_target_model = decoder_compile_job.get_target_model()
# Trace model
encoder_input_shape = encoder_model.get_input_spec()
encoder_sample_inputs = encoder_model.sample_inputs()
traced_encoder_model = torch.jit.trace(encoder_model, [torch.tensor(data[0]) for _, data in encoder_sample_inputs.items()])
# Compile model on a specific device
encoder_compile_job = hub.submit_compile_job(
model=traced_encoder_model ,
device=device,
input_specs=encoder_model.get_input_spec(),
)
# Get target model to run on-device
encoder_target_model = encoder_compile_job.get_target_model()
```
Step 2: **Performance profiling on cloud-hosted device**
After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
decoder_profile_job = hub.submit_profile_job(
model=decoder_target_model,
device=device,
)
encoder_profile_job = hub.submit_profile_job(
model=encoder_target_model,
device=device,
)
```
Step 3: **Verify on-device accuracy**
To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
decoder_input_data = decoder_model.sample_inputs()
decoder_inference_job = hub.submit_inference_job(
model=decoder_target_model,
device=device,
inputs=decoder_input_data,
)
decoder_inference_job.download_output_data()
encoder_input_data = encoder_model.sample_inputs()
encoder_inference_job = hub.submit_inference_job(
model=encoder_target_model,
device=device,
inputs=encoder_input_data,
)
encoder_inference_job.download_output_data()
```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.
**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on TrOCR's performance across various devices [here](https://aihub.qualcomm.com/models/trocr).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of TrOCR can be found
[here](https://github.com/microsoft/unilm/blob/master/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
## References
* [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282)
* [Source Model Implementation](https://huggingface.co/microsoft/trocr-small-stage1)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).
|