File size: 17,617 Bytes
ef427ac c776c2a ef427ac e8a849c ef427ac 79b3898 ef427ac 238714d 79b3898 ef427ac 6d7dbd1 ef427ac 5291c19 c776c2a 9b1fa5c c776c2a ef427ac 9d8ef57 ef427ac 9b1fa5c ef427ac 8285fbc 5291c19 aa988ea c776c2a 5291c19 2bc5d1f c776c2a 9b1fa5c 2bc5d1f 8285fbc 9d8ef57 ef427ac 9d8ef57 ef427ac aa988ea ef427ac aa988ea 2bc5d1f 8285fbc ef427ac 8285fbc 2bc5d1f 8285fbc 2bc5d1f 8285fbc 2bc5d1f 8285fbc 2bc5d1f 8285fbc 2bc5d1f ef427ac 2bc5d1f ef427ac 2bc5d1f ef427ac 2bc5d1f ef427ac 2bc5d1f ef427ac 2bc5d1f ef427ac 8285fbc 14bfc29 2bc5d1f ef427ac 8285fbc 14bfc29 8285fbc 2bc5d1f ef427ac e8a849c ef427ac 9d8ef57 ef427ac 5291c19 ef427ac 9b1fa5c 5291c19 ef427ac 5291c19 ef427ac 4332354 ef427ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
---
library_name: pytorch
license: mit
tags:
- android
pipeline_tag: image-to-text
---

# TrOCR: Optimized for Mobile Deployment
## Transformer based model for state-of-the-art optical character recognition (OCR) on both printed and handwritten text
End-to-end text recognition approach with pre-trained image transformer and text transformer models for both image understanding and wordpiece-level text generation.
This model is an implementation of TrOCR found [here](https://huggingface.co/microsoft/trocr-small-stage1).
This repository provides scripts to run TrOCR on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/trocr).
### Model Details
- **Model Type:** Image to text
- **Model Stats:**
- Model checkpoint: trocr-small-stage1
- Input resolution: 320x320
- Number of parameters (TrOCREncoder): 23.0M
- Model size (TrOCREncoder): 87.8 MB
- Number of parameters (TrOCRDecoder): 38.3M
- Model size (TrOCRDecoder): 146 MB
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| TrOCRDecoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 2.227 ms | 0 - 353 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 2.276 ms | 2 - 4 MB | FP16 | NPU | [TrOCR.so](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.so) |
| TrOCRDecoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 2.926 ms | 0 - 170 MB | FP16 | NPU | [TrOCR.onnx](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.onnx) |
| TrOCRDecoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 1.587 ms | 0 - 54 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 1.665 ms | 0 - 15 MB | FP16 | NPU | [TrOCR.so](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.so) |
| TrOCRDecoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 2.118 ms | 0 - 64 MB | FP16 | NPU | [TrOCR.onnx](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.onnx) |
| TrOCRDecoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 1.489 ms | 0 - 48 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 1.595 ms | 3 - 51 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 1.87 ms | 2 - 47 MB | FP16 | NPU | [TrOCR.onnx](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.onnx) |
| TrOCRDecoder | SA7255P ADP | SA7255P | TFLITE | 12.182 ms | 0 - 43 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | SA7255P ADP | SA7255P | QNN | 12.308 ms | 7 - 14 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 2.193 ms | 0 - 289 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | SA8255 (Proxy) | SA8255P Proxy | QNN | 2.487 ms | 2 - 5 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | SA8295P ADP | SA8295P | TFLITE | 3.154 ms | 0 - 41 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | SA8295P ADP | SA8295P | QNN | 3.561 ms | 7 - 17 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 2.185 ms | 0 - 308 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 2.255 ms | 2 - 4 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | SA8775P ADP | SA8775P | TFLITE | 3.366 ms | 0 - 43 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | SA8775P ADP | SA8775P | QNN | 3.497 ms | 7 - 14 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 12.182 ms | 0 - 43 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 12.308 ms | 7 - 14 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 2.189 ms | 0 - 87 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 2.308 ms | 2 - 5 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 3.366 ms | 0 - 43 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 3.497 ms | 7 - 14 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 2.479 ms | 0 - 49 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.tflite) |
| TrOCRDecoder | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 2.743 ms | 5 - 54 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 2.406 ms | 7 - 7 MB | FP16 | NPU | Use Export Script |
| TrOCRDecoder | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 2.663 ms | 68 - 68 MB | FP16 | NPU | [TrOCR.onnx](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCRDecoder.onnx) |
| TrOCREncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 50.264 ms | 7 - 31 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 37.193 ms | 2 - 4 MB | FP16 | NPU | [TrOCR.so](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.so) |
| TrOCREncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 38.277 ms | 14 - 161 MB | FP16 | NPU | [TrOCR.onnx](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.onnx) |
| TrOCREncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 39.543 ms | 4 - 65 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 29.756 ms | 2 - 18 MB | FP16 | NPU | [TrOCR.so](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.so) |
| TrOCREncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 32.2 ms | 16 - 77 MB | FP16 | NPU | [TrOCR.onnx](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.onnx) |
| TrOCREncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 32.147 ms | 6 - 70 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 37.162 ms | 2 - 66 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 27.594 ms | 8 - 70 MB | FP16 | NPU | [TrOCR.onnx](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.onnx) |
| TrOCREncoder | SA7255P ADP | SA7255P | TFLITE | 266.206 ms | 1 - 63 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | SA7255P ADP | SA7255P | QNN | 247.7 ms | 2 - 9 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 50.096 ms | 7 - 31 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | SA8255 (Proxy) | SA8255P Proxy | QNN | 37.306 ms | 2 - 4 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | SA8295P ADP | SA8295P | TFLITE | 65.436 ms | 7 - 67 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | SA8295P ADP | SA8295P | QNN | 50.625 ms | 2 - 12 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 50.166 ms | 7 - 27 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 37.292 ms | 2 - 4 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | SA8775P ADP | SA8775P | TFLITE | 59.798 ms | 7 - 69 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | SA8775P ADP | SA8775P | QNN | 42.357 ms | 2 - 10 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 266.206 ms | 1 - 63 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 247.7 ms | 2 - 9 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 50.181 ms | 7 - 35 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 37.081 ms | 2 - 4 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 59.798 ms | 7 - 69 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 42.357 ms | 2 - 10 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 60.287 ms | 7 - 66 MB | FP16 | NPU | [TrOCR.tflite](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.tflite) |
| TrOCREncoder | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 66.83 ms | 2 - 64 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 33.968 ms | 2 - 2 MB | FP16 | NPU | Use Export Script |
| TrOCREncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 36.85 ms | 50 - 50 MB | FP16 | NPU | [TrOCR.onnx](https://huggingface.co/qualcomm/TrOCR/blob/main/TrOCREncoder.onnx) |
## Installation
Install the package via pip:
```bash
pip install "qai-hub-models[trocr]"
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.trocr.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.trocr.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.trocr.export
```
```
Profiling Results
------------------------------------------------------------
TrOCRDecoder
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 2.2
Estimated peak memory usage (MB): [0, 353]
Total # Ops : 399
Compute Unit(s) : NPU (399 ops)
------------------------------------------------------------
TrOCREncoder
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 50.3
Estimated peak memory usage (MB): [7, 31]
Total # Ops : 591
Compute Unit(s) : NPU (591 ops)
```
## How does this work?
This [export script](https://aihub.qualcomm.com/models/trocr/qai_hub_models/models/TrOCR/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:
Step 1: **Compile model for on-device deployment**
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.
```python
import torch
import qai_hub as hub
from qai_hub_models.models.trocr import Model
# Load the model
model = Model.from_pretrained()
decoder_model = model.decoder
encoder_model = model.encoder
# Device
device = hub.Device("Samsung Galaxy S23")
# Trace model
decoder_input_shape = decoder_model.get_input_spec()
decoder_sample_inputs = decoder_model.sample_inputs()
traced_decoder_model = torch.jit.trace(decoder_model, [torch.tensor(data[0]) for _, data in decoder_sample_inputs.items()])
# Compile model on a specific device
decoder_compile_job = hub.submit_compile_job(
model=traced_decoder_model ,
device=device,
input_specs=decoder_model.get_input_spec(),
)
# Get target model to run on-device
decoder_target_model = decoder_compile_job.get_target_model()
# Trace model
encoder_input_shape = encoder_model.get_input_spec()
encoder_sample_inputs = encoder_model.sample_inputs()
traced_encoder_model = torch.jit.trace(encoder_model, [torch.tensor(data[0]) for _, data in encoder_sample_inputs.items()])
# Compile model on a specific device
encoder_compile_job = hub.submit_compile_job(
model=traced_encoder_model ,
device=device,
input_specs=encoder_model.get_input_spec(),
)
# Get target model to run on-device
encoder_target_model = encoder_compile_job.get_target_model()
```
Step 2: **Performance profiling on cloud-hosted device**
After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
decoder_profile_job = hub.submit_profile_job(
model=decoder_target_model,
device=device,
)
encoder_profile_job = hub.submit_profile_job(
model=encoder_target_model,
device=device,
)
```
Step 3: **Verify on-device accuracy**
To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
decoder_input_data = decoder_model.sample_inputs()
decoder_inference_job = hub.submit_inference_job(
model=decoder_target_model,
device=device,
inputs=decoder_input_data,
)
decoder_inference_job.download_output_data()
encoder_input_data = encoder_model.sample_inputs()
encoder_inference_job = hub.submit_inference_job(
model=encoder_target_model,
device=device,
inputs=encoder_input_data,
)
encoder_inference_job.download_output_data()
```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.
**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on TrOCR's performance across various devices [here](https://aihub.qualcomm.com/models/trocr).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of TrOCR can be found
[here](https://github.com/microsoft/unilm/blob/master/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
## References
* [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282)
* [Source Model Implementation](https://huggingface.co/microsoft/trocr-small-stage1)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).
|