Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -120,29 +120,13 @@ in memory using the `jit.trace` and then call the `submit_compile_job` API.
|
|
| 120 |
import torch
|
| 121 |
|
| 122 |
import qai_hub as hub
|
| 123 |
-
from qai_hub_models.models.quicksrnetlarge import
|
| 124 |
|
| 125 |
# Load the model
|
| 126 |
-
torch_model = Model.from_pretrained()
|
| 127 |
|
| 128 |
# Device
|
| 129 |
device = hub.Device("Samsung Galaxy S23")
|
| 130 |
|
| 131 |
-
# Trace model
|
| 132 |
-
input_shape = torch_model.get_input_spec()
|
| 133 |
-
sample_inputs = torch_model.sample_inputs()
|
| 134 |
-
|
| 135 |
-
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
|
| 136 |
-
|
| 137 |
-
# Compile model on a specific device
|
| 138 |
-
compile_job = hub.submit_compile_job(
|
| 139 |
-
model=pt_model,
|
| 140 |
-
device=device,
|
| 141 |
-
input_specs=torch_model.get_input_spec(),
|
| 142 |
-
)
|
| 143 |
-
|
| 144 |
-
# Get target model to run on-device
|
| 145 |
-
target_model = compile_job.get_target_model()
|
| 146 |
|
| 147 |
```
|
| 148 |
|
|
@@ -155,10 +139,10 @@ provisioned in the cloud. Once the job is submitted, you can navigate to a
|
|
| 155 |
provided job URL to view a variety of on-device performance metrics.
|
| 156 |
```python
|
| 157 |
profile_job = hub.submit_profile_job(
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
)
|
| 161 |
-
|
| 162 |
```
|
| 163 |
|
| 164 |
Step 3: **Verify on-device accuracy**
|
|
@@ -168,12 +152,11 @@ on sample input data on the same cloud hosted device.
|
|
| 168 |
```python
|
| 169 |
input_data = torch_model.sample_inputs()
|
| 170 |
inference_job = hub.submit_inference_job(
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
)
|
| 175 |
-
|
| 176 |
-
on_device_output = inference_job.download_output_data()
|
| 177 |
|
| 178 |
```
|
| 179 |
With the output of the model, you can compute like PSNR, relative errors or
|
|
|
|
| 120 |
import torch
|
| 121 |
|
| 122 |
import qai_hub as hub
|
| 123 |
+
from qai_hub_models.models.quicksrnetlarge import
|
| 124 |
|
| 125 |
# Load the model
|
|
|
|
| 126 |
|
| 127 |
# Device
|
| 128 |
device = hub.Device("Samsung Galaxy S23")
|
| 129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
```
|
| 132 |
|
|
|
|
| 139 |
provided job URL to view a variety of on-device performance metrics.
|
| 140 |
```python
|
| 141 |
profile_job = hub.submit_profile_job(
|
| 142 |
+
model=target_model,
|
| 143 |
+
device=device,
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
```
|
| 147 |
|
| 148 |
Step 3: **Verify on-device accuracy**
|
|
|
|
| 152 |
```python
|
| 153 |
input_data = torch_model.sample_inputs()
|
| 154 |
inference_job = hub.submit_inference_job(
|
| 155 |
+
model=target_model,
|
| 156 |
+
device=device,
|
| 157 |
+
inputs=input_data,
|
| 158 |
+
)
|
| 159 |
+
on_device_output = inference_job.download_output_data()
|
|
|
|
| 160 |
|
| 161 |
```
|
| 162 |
With the output of the model, you can compute like PSNR, relative errors or
|