Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -32,8 +32,8 @@ More details on model performance across various devices, can be found
|
|
32 |
|
33 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
34 |
| ---|---|---|---|---|---|---|---|
|
35 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 2.
|
36 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 2.
|
37 |
|
38 |
|
39 |
## Installation
|
@@ -93,16 +93,16 @@ python -m qai_hub_models.models.quicksrnetlarge.export
|
|
93 |
```
|
94 |
Profile Job summary of QuickSRNetLarge
|
95 |
--------------------------------------------------
|
96 |
-
Device: Samsung Galaxy
|
97 |
-
Estimated Inference Time:
|
98 |
-
Estimated Peak Memory Range: 0.02-
|
99 |
Compute Units: NPU (28),CPU (3) | Total (31)
|
100 |
|
101 |
Profile Job summary of QuickSRNetLarge
|
102 |
--------------------------------------------------
|
103 |
-
Device: Samsung Galaxy
|
104 |
-
Estimated Inference Time:
|
105 |
-
Estimated Peak Memory Range: 0.20-
|
106 |
Compute Units: NPU (32) | Total (32)
|
107 |
|
108 |
|
@@ -222,7 +222,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
222 |
## License
|
223 |
- The license for the original implementation of QuickSRNetLarge can be found
|
224 |
[here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf).
|
225 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
226 |
|
227 |
## References
|
228 |
* [QuickSRNet: Plain Single-Image Super-Resolution Architecture for Faster Inference on Mobile Platforms](https://arxiv.org/abs/2303.04336)
|
|
|
32 |
|
33 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
34 |
| ---|---|---|---|---|---|---|---|
|
35 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 2.5 ms | 0 - 1 MB | FP16 | NPU | [QuickSRNetLarge.tflite](https://huggingface.co/qualcomm/QuickSRNetLarge/blob/main/QuickSRNetLarge.tflite)
|
36 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 2.109 ms | 0 - 5 MB | FP16 | NPU | [QuickSRNetLarge.so](https://huggingface.co/qualcomm/QuickSRNetLarge/blob/main/QuickSRNetLarge.so)
|
37 |
|
38 |
|
39 |
## Installation
|
|
|
93 |
```
|
94 |
Profile Job summary of QuickSRNetLarge
|
95 |
--------------------------------------------------
|
96 |
+
Device: Samsung Galaxy S24 (14)
|
97 |
+
Estimated Inference Time: 1.78 ms
|
98 |
+
Estimated Peak Memory Range: 0.02-26.35 MB
|
99 |
Compute Units: NPU (28),CPU (3) | Total (31)
|
100 |
|
101 |
Profile Job summary of QuickSRNetLarge
|
102 |
--------------------------------------------------
|
103 |
+
Device: Samsung Galaxy S24 (14)
|
104 |
+
Estimated Inference Time: 1.51 ms
|
105 |
+
Estimated Peak Memory Range: 0.20-17.69 MB
|
106 |
Compute Units: NPU (32) | Total (32)
|
107 |
|
108 |
|
|
|
222 |
## License
|
223 |
- The license for the original implementation of QuickSRNetLarge can be found
|
224 |
[here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf).
|
225 |
+
- The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
|
226 |
|
227 |
## References
|
228 |
* [QuickSRNet: Plain Single-Image Super-Resolution Architecture for Faster Inference on Mobile Platforms](https://arxiv.org/abs/2303.04336)
|