qaihm-bot commited on
Commit
2c1de4d
·
verified ·
1 Parent(s): 4cab813

See https://github.com/quic/ai-hub-models/releases/v0.33.0 for changelog.

Files changed (4) hide show
  1. .gitattributes +1 -0
  2. DEPLOYMENT_MODEL_LICENSE.pdf +3 -0
  3. LICENSE +2 -0
  4. README.md +1 -1
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ DEPLOYMENT_MODEL_LICENSE.pdf filter=lfs diff=lfs merge=lfs -text
DEPLOYMENT_MODEL_LICENSE.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4409f93b0e82531303b3e10f52f1fdfb56467a25f05b7441c6bbd8bb8a64b42c
3
+ size 109629
LICENSE ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ The license of the original trained model can be found at https://huggingface.co/microsoft/Phi-3.5-mini-instruct/blob/main/LICENSE.
2
+ The license for the deployable model files (.tflite, .onnx, .dlc, .bin, etc.) can be found in DEPLOYMENT_MODEL_LICENSE.pdf.
README.md CHANGED
@@ -28,7 +28,7 @@ This model is an implementation of Phi-3.5-mini-instruct found [here](https://hu
28
  - **Model Stats:**
29
  - Input sequence length for Prompt Processor: 128
30
  - Context length: 4096
31
- - Number of parameters: None
32
  - Precision: w4a16 + w8a16 (few layers)
33
  - Num of key-value heads: 8
34
  - Information about the model parts: Prompt Processor and Token Generator are split into 4 parts each. Each corresponding Prompt Processor and Token Generator part share weights.
 
28
  - **Model Stats:**
29
  - Input sequence length for Prompt Processor: 128
30
  - Context length: 4096
31
+ - Number of parameters: 3.8B
32
  - Precision: w4a16 + w8a16 (few layers)
33
  - Num of key-value heads: 8
34
  - Information about the model parts: Prompt Processor and Token Generator are split into 4 parts each. Each corresponding Prompt Processor and Token Generator part share weights.