v0.33.0
Browse filesSee https://github.com/quic/ai-hub-models/releases/v0.33.0 for changelog.
- .gitattributes +1 -0
- DEPLOYMENT_MODEL_LICENSE.pdf +3 -0
- LICENSE +2 -0
- README.md +1 -1
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
DEPLOYMENT_MODEL_LICENSE.pdf filter=lfs diff=lfs merge=lfs -text
|
DEPLOYMENT_MODEL_LICENSE.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4409f93b0e82531303b3e10f52f1fdfb56467a25f05b7441c6bbd8bb8a64b42c
|
3 |
+
size 109629
|
LICENSE
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
The license of the original trained model can be found at https://huggingface.co/microsoft/Phi-3.5-mini-instruct/blob/main/LICENSE.
|
2 |
+
The license for the deployable model files (.tflite, .onnx, .dlc, .bin, etc.) can be found in DEPLOYMENT_MODEL_LICENSE.pdf.
|
README.md
CHANGED
@@ -28,7 +28,7 @@ This model is an implementation of Phi-3.5-mini-instruct found [here](https://hu
|
|
28 |
- **Model Stats:**
|
29 |
- Input sequence length for Prompt Processor: 128
|
30 |
- Context length: 4096
|
31 |
-
- Number of parameters:
|
32 |
- Precision: w4a16 + w8a16 (few layers)
|
33 |
- Num of key-value heads: 8
|
34 |
- Information about the model parts: Prompt Processor and Token Generator are split into 4 parts each. Each corresponding Prompt Processor and Token Generator part share weights.
|
|
|
28 |
- **Model Stats:**
|
29 |
- Input sequence length for Prompt Processor: 128
|
30 |
- Context length: 4096
|
31 |
+
- Number of parameters: 3.8B
|
32 |
- Precision: w4a16 + w8a16 (few layers)
|
33 |
- Num of key-value heads: 8
|
34 |
- Information about the model parts: Prompt Processor and Token Generator are split into 4 parts each. Each corresponding Prompt Processor and Token Generator part share weights.
|