Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -30,10 +30,13 @@ More details on model performance across various devices, can be found
|
|
30 |
- Model size: 63.2 MB
|
31 |
|
32 |
|
|
|
|
|
33 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
34 |
| ---|---|---|---|---|---|---|---|
|
35 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 3.
|
36 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 3.
|
|
|
37 |
|
38 |
|
39 |
## Installation
|
@@ -41,10 +44,11 @@ More details on model performance across various devices, can be found
|
|
41 |
This model can be installed as a Python package via pip.
|
42 |
|
43 |
```bash
|
44 |
-
pip install qai-hub-models
|
45 |
```
|
46 |
|
47 |
|
|
|
48 |
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
49 |
|
50 |
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
@@ -94,15 +98,17 @@ python -m qai_hub_models.models.midas.export
|
|
94 |
Profile Job summary of Midas-V2
|
95 |
--------------------------------------------------
|
96 |
Device: Snapdragon X Elite CRD (11)
|
97 |
-
Estimated Inference Time: 3.
|
98 |
Estimated Peak Memory Range: 0.75-0.75 MB
|
99 |
Compute Units: NPU (199) | Total (199)
|
100 |
|
101 |
|
102 |
```
|
|
|
|
|
103 |
## How does this work?
|
104 |
|
105 |
-
This [export script](https://
|
106 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
107 |
on-device. Lets go through each step below in detail:
|
108 |
|
@@ -179,6 +185,7 @@ spot check the output with expected output.
|
|
179 |
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
180 |
|
181 |
|
|
|
182 |
## Run demo on a cloud-hosted device
|
183 |
|
184 |
You can also run the demo on-device.
|
@@ -215,7 +222,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
215 |
## License
|
216 |
- The license for the original implementation of Midas-V2 can be found
|
217 |
[here](https://github.com/isl-org/MiDaS/blob/master/LICENSE).
|
218 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
219 |
|
220 |
## References
|
221 |
* [Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer](https://arxiv.org/abs/1907.01341v3)
|
|
|
30 |
- Model size: 63.2 MB
|
31 |
|
32 |
|
33 |
+
|
34 |
+
|
35 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
36 |
| ---|---|---|---|---|---|---|---|
|
37 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 3.428 ms | 0 - 3 MB | FP16 | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite)
|
38 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 3.372 ms | 1 - 11 MB | FP16 | NPU | [Midas-V2.so](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.so)
|
39 |
+
|
40 |
|
41 |
|
42 |
## Installation
|
|
|
44 |
This model can be installed as a Python package via pip.
|
45 |
|
46 |
```bash
|
47 |
+
pip install "qai-hub-models[midas]"
|
48 |
```
|
49 |
|
50 |
|
51 |
+
|
52 |
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
53 |
|
54 |
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
|
|
98 |
Profile Job summary of Midas-V2
|
99 |
--------------------------------------------------
|
100 |
Device: Snapdragon X Elite CRD (11)
|
101 |
+
Estimated Inference Time: 3.53 ms
|
102 |
Estimated Peak Memory Range: 0.75-0.75 MB
|
103 |
Compute Units: NPU (199) | Total (199)
|
104 |
|
105 |
|
106 |
```
|
107 |
+
|
108 |
+
|
109 |
## How does this work?
|
110 |
|
111 |
+
This [export script](https://aihub.qualcomm.com/models/midas/qai_hub_models/models/Midas-V2/export.py)
|
112 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
113 |
on-device. Lets go through each step below in detail:
|
114 |
|
|
|
185 |
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
186 |
|
187 |
|
188 |
+
|
189 |
## Run demo on a cloud-hosted device
|
190 |
|
191 |
You can also run the demo on-device.
|
|
|
222 |
## License
|
223 |
- The license for the original implementation of Midas-V2 can be found
|
224 |
[here](https://github.com/isl-org/MiDaS/blob/master/LICENSE).
|
225 |
+
- The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
226 |
|
227 |
## References
|
228 |
* [Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer](https://arxiv.org/abs/1907.01341v3)
|