qaihm-bot commited on
Commit
c71493f
·
verified ·
1 Parent(s): 7cdb080

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +13 -6
README.md CHANGED
@@ -30,10 +30,13 @@ More details on model performance across various devices, can be found
30
  - Model size: 63.2 MB
31
 
32
 
 
 
33
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
34
  | ---|---|---|---|---|---|---|---|
35
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 3.425 ms | 0 - 2 MB | FP16 | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite)
36
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 3.375 ms | 0 - 18 MB | FP16 | NPU | [Midas-V2.so](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.so)
 
37
 
38
 
39
  ## Installation
@@ -41,10 +44,11 @@ More details on model performance across various devices, can be found
41
  This model can be installed as a Python package via pip.
42
 
43
  ```bash
44
- pip install qai-hub-models
45
  ```
46
 
47
 
 
48
  ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
49
 
50
  Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
@@ -94,15 +98,17 @@ python -m qai_hub_models.models.midas.export
94
  Profile Job summary of Midas-V2
95
  --------------------------------------------------
96
  Device: Snapdragon X Elite CRD (11)
97
- Estimated Inference Time: 3.59 ms
98
  Estimated Peak Memory Range: 0.75-0.75 MB
99
  Compute Units: NPU (199) | Total (199)
100
 
101
 
102
  ```
 
 
103
  ## How does this work?
104
 
105
- This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/Midas-V2/export.py)
106
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
107
  on-device. Lets go through each step below in detail:
108
 
@@ -179,6 +185,7 @@ spot check the output with expected output.
179
  AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
180
 
181
 
 
182
  ## Run demo on a cloud-hosted device
183
 
184
  You can also run the demo on-device.
@@ -215,7 +222,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
215
  ## License
216
  - The license for the original implementation of Midas-V2 can be found
217
  [here](https://github.com/isl-org/MiDaS/blob/master/LICENSE).
218
- - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
219
 
220
  ## References
221
  * [Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer](https://arxiv.org/abs/1907.01341v3)
 
30
  - Model size: 63.2 MB
31
 
32
 
33
+
34
+
35
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
36
  | ---|---|---|---|---|---|---|---|
37
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 3.428 ms | 0 - 3 MB | FP16 | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite)
38
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 3.372 ms | 1 - 11 MB | FP16 | NPU | [Midas-V2.so](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.so)
39
+
40
 
41
 
42
  ## Installation
 
44
  This model can be installed as a Python package via pip.
45
 
46
  ```bash
47
+ pip install "qai-hub-models[midas]"
48
  ```
49
 
50
 
51
+
52
  ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
53
 
54
  Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
 
98
  Profile Job summary of Midas-V2
99
  --------------------------------------------------
100
  Device: Snapdragon X Elite CRD (11)
101
+ Estimated Inference Time: 3.53 ms
102
  Estimated Peak Memory Range: 0.75-0.75 MB
103
  Compute Units: NPU (199) | Total (199)
104
 
105
 
106
  ```
107
+
108
+
109
  ## How does this work?
110
 
111
+ This [export script](https://aihub.qualcomm.com/models/midas/qai_hub_models/models/Midas-V2/export.py)
112
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
113
  on-device. Lets go through each step below in detail:
114
 
 
185
  AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
186
 
187
 
188
+
189
  ## Run demo on a cloud-hosted device
190
 
191
  You can also run the demo on-device.
 
222
  ## License
223
  - The license for the original implementation of Midas-V2 can be found
224
  [here](https://github.com/isl-org/MiDaS/blob/master/LICENSE).
225
+ - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
226
 
227
  ## References
228
  * [Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer](https://arxiv.org/abs/1907.01341v3)