Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -34,29 +34,31 @@ More details on model performance across various devices, can be found
|
|
34 |
|
35 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
36 |
|---|---|---|---|---|---|---|---|---|
|
37 |
-
| Midas-V2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 3.
|
38 |
-
| Midas-V2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 3.
|
39 |
-
| Midas-V2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 3.
|
40 |
-
| Midas-V2 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 2.
|
41 |
-
| Midas-V2 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 2.
|
42 |
-
| Midas-V2 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 2.
|
43 |
-
| Midas-V2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE |
|
44 |
-
| Midas-V2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 2.
|
45 |
-
| Midas-V2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 2.
|
46 |
-
| Midas-V2 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 3.
|
47 |
-
| Midas-V2 | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 3.
|
48 |
-
| Midas-V2 |
|
49 |
-
| Midas-V2 |
|
50 |
-
| Midas-V2 |
|
51 |
-
| Midas-V2 |
|
52 |
-
| Midas-V2 |
|
53 |
-
| Midas-V2 |
|
54 |
-
| Midas-V2 |
|
55 |
-
| Midas-V2 |
|
56 |
-
| Midas-V2 |
|
57 |
-
| Midas-V2 |
|
58 |
-
| Midas-V2 |
|
59 |
-
| Midas-V2 |
|
|
|
|
|
60 |
|
61 |
|
62 |
|
@@ -122,7 +124,7 @@ Midas-V2
|
|
122 |
Device : Samsung Galaxy S23 (13)
|
123 |
Runtime : TFLITE
|
124 |
Estimated inference time (ms) : 3.2
|
125 |
-
Estimated peak memory usage (MB): [0,
|
126 |
Total # Ops : 138
|
127 |
Compute Unit(s) : NPU (138 ops)
|
128 |
```
|
@@ -143,13 +145,29 @@ in memory using the `jit.trace` and then call the `submit_compile_job` API.
|
|
143 |
import torch
|
144 |
|
145 |
import qai_hub as hub
|
146 |
-
from qai_hub_models.models.midas import
|
147 |
|
148 |
# Load the model
|
|
|
149 |
|
150 |
# Device
|
151 |
device = hub.Device("Samsung Galaxy S23")
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
```
|
155 |
|
|
|
34 |
|
35 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
36 |
|---|---|---|---|---|---|---|---|---|
|
37 |
+
| Midas-V2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 3.249 ms | 0 - 19 MB | FP16 | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
|
38 |
+
| Midas-V2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 3.275 ms | 0 - 111 MB | FP16 | NPU | [Midas-V2.so](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.so) |
|
39 |
+
| Midas-V2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 3.304 ms | 0 - 41 MB | FP16 | NPU | [Midas-V2.onnx](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.onnx) |
|
40 |
+
| Midas-V2 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 2.269 ms | 0 - 27 MB | FP16 | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
|
41 |
+
| Midas-V2 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 2.308 ms | 1 - 25 MB | FP16 | NPU | [Midas-V2.so](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.so) |
|
42 |
+
| Midas-V2 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 2.539 ms | 0 - 93 MB | FP16 | NPU | [Midas-V2.onnx](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.onnx) |
|
43 |
+
| Midas-V2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 1.78 ms | 0 - 23 MB | FP16 | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
|
44 |
+
| Midas-V2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 2.17 ms | 0 - 22 MB | FP16 | NPU | Use Export Script |
|
45 |
+
| Midas-V2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 2.226 ms | 0 - 43 MB | FP16 | NPU | [Midas-V2.onnx](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.onnx) |
|
46 |
+
| Midas-V2 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 3.213 ms | 0 - 51 MB | FP16 | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
|
47 |
+
| Midas-V2 | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 3.027 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
|
48 |
+
| Midas-V2 | SA7255P ADP | SA7255P | TFLITE | 84.525 ms | 0 - 22 MB | FP16 | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
|
49 |
+
| Midas-V2 | SA7255P ADP | SA7255P | QNN | 84.275 ms | 1 - 6 MB | FP16 | NPU | Use Export Script |
|
50 |
+
| Midas-V2 | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 3.225 ms | 0 - 40 MB | FP16 | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
|
51 |
+
| Midas-V2 | SA8255 (Proxy) | SA8255P Proxy | QNN | 3.043 ms | 0 - 1 MB | FP16 | NPU | Use Export Script |
|
52 |
+
| Midas-V2 | SA8295P ADP | SA8295P | TFLITE | 5.59 ms | 0 - 21 MB | FP16 | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
|
53 |
+
| Midas-V2 | SA8295P ADP | SA8295P | QNN | 5.669 ms | 1 - 6 MB | FP16 | NPU | Use Export Script |
|
54 |
+
| Midas-V2 | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 3.245 ms | 0 - 21 MB | FP16 | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
|
55 |
+
| Midas-V2 | SA8650 (Proxy) | SA8650P Proxy | QNN | 3.034 ms | 0 - 1 MB | FP16 | NPU | Use Export Script |
|
56 |
+
| Midas-V2 | SA8775P ADP | SA8775P | TFLITE | 5.435 ms | 0 - 21 MB | FP16 | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
|
57 |
+
| Midas-V2 | SA8775P ADP | SA8775P | QNN | 5.233 ms | 1 - 6 MB | FP16 | NPU | Use Export Script |
|
58 |
+
| Midas-V2 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 4.787 ms | 0 - 24 MB | FP16 | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
|
59 |
+
| Midas-V2 | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 4.906 ms | 1 - 23 MB | FP16 | NPU | Use Export Script |
|
60 |
+
| Midas-V2 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 3.23 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
|
61 |
+
| Midas-V2 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 3.344 ms | 37 - 37 MB | FP16 | NPU | [Midas-V2.onnx](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.onnx) |
|
62 |
|
63 |
|
64 |
|
|
|
124 |
Device : Samsung Galaxy S23 (13)
|
125 |
Runtime : TFLITE
|
126 |
Estimated inference time (ms) : 3.2
|
127 |
+
Estimated peak memory usage (MB): [0, 19]
|
128 |
Total # Ops : 138
|
129 |
Compute Unit(s) : NPU (138 ops)
|
130 |
```
|
|
|
145 |
import torch
|
146 |
|
147 |
import qai_hub as hub
|
148 |
+
from qai_hub_models.models.midas import Model
|
149 |
|
150 |
# Load the model
|
151 |
+
torch_model = Model.from_pretrained()
|
152 |
|
153 |
# Device
|
154 |
device = hub.Device("Samsung Galaxy S23")
|
155 |
|
156 |
+
# Trace model
|
157 |
+
input_shape = torch_model.get_input_spec()
|
158 |
+
sample_inputs = torch_model.sample_inputs()
|
159 |
+
|
160 |
+
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
|
161 |
+
|
162 |
+
# Compile model on a specific device
|
163 |
+
compile_job = hub.submit_compile_job(
|
164 |
+
model=pt_model,
|
165 |
+
device=device,
|
166 |
+
input_specs=torch_model.get_input_spec(),
|
167 |
+
)
|
168 |
+
|
169 |
+
# Get target model to run on-device
|
170 |
+
target_model = compile_job.get_target_model()
|
171 |
|
172 |
```
|
173 |
|