Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -14,7 +14,7 @@ tags:
|
|
14 |
|
15 |
Midas is designed for estimating depth at each point in an image.
|
16 |
|
17 |
-
This model is an implementation of Midas-V2 found [here](
|
18 |
This repository provides scripts to run Midas-V2 on Qualcomm® devices.
|
19 |
More details on model performance across various devices, can be found
|
20 |
[here](https://aihub.qualcomm.com/models/midas).
|
@@ -29,15 +29,32 @@ More details on model performance across various devices, can be found
|
|
29 |
- Number of parameters: 16.6M
|
30 |
- Model size: 63.2 MB
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
|
34 |
|
35 |
-
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
36 |
-
| ---|---|---|---|---|---|---|---|
|
37 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 3.254 ms | 0 - 2 MB | FP16 | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite)
|
38 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 3.305 ms | 0 - 105 MB | FP16 | NPU | [Midas-V2.so](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.so)
|
39 |
-
|
40 |
-
|
41 |
|
42 |
## Installation
|
43 |
|
@@ -93,16 +110,16 @@ device. This script does the following:
|
|
93 |
```bash
|
94 |
python -m qai_hub_models.models.midas.export
|
95 |
```
|
96 |
-
|
97 |
```
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
106 |
```
|
107 |
|
108 |
|
@@ -201,15 +218,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
201 |
Get more details on Midas-V2's performance across various devices [here](https://aihub.qualcomm.com/models/midas).
|
202 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
203 |
|
|
|
204 |
## License
|
205 |
-
|
206 |
-
|
207 |
-
|
|
|
208 |
|
209 |
## References
|
210 |
* [Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer](https://arxiv.org/abs/1907.01341v3)
|
211 |
* [Source Model Implementation](https://github.com/isl-org/MiDaS)
|
212 |
|
|
|
|
|
213 |
## Community
|
214 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
215 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
|
|
14 |
|
15 |
Midas is designed for estimating depth at each point in an image.
|
16 |
|
17 |
+
This model is an implementation of Midas-V2 found [here]({source_repo}).
|
18 |
This repository provides scripts to run Midas-V2 on Qualcomm® devices.
|
19 |
More details on model performance across various devices, can be found
|
20 |
[here](https://aihub.qualcomm.com/models/midas).
|
|
|
29 |
- Number of parameters: 16.6M
|
30 |
- Model size: 63.2 MB
|
31 |
|
32 |
+
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
33 |
+
|---|---|---|---|---|---|---|---|---|
|
34 |
+
| Midas-V2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 3.24 ms | 0 - 2 MB | FP16 | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
|
35 |
+
| Midas-V2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 3.278 ms | 0 - 101 MB | FP16 | NPU | [Midas-V2.so](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.so) |
|
36 |
+
| Midas-V2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 3.303 ms | 0 - 41 MB | FP16 | NPU | [Midas-V2.onnx](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.onnx) |
|
37 |
+
| Midas-V2 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 2.841 ms | 0 - 87 MB | FP16 | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
|
38 |
+
| Midas-V2 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 2.462 ms | 1 - 27 MB | FP16 | NPU | [Midas-V2.so](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.so) |
|
39 |
+
| Midas-V2 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 2.55 ms | 0 - 91 MB | FP16 | NPU | [Midas-V2.onnx](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.onnx) |
|
40 |
+
| Midas-V2 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 3.213 ms | 0 - 5 MB | FP16 | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
|
41 |
+
| Midas-V2 | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 3.087 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
|
42 |
+
| Midas-V2 | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 3.222 ms | 0 - 2 MB | FP16 | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
|
43 |
+
| Midas-V2 | SA8255 (Proxy) | SA8255P Proxy | QNN | 3.045 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
|
44 |
+
| Midas-V2 | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 3.228 ms | 0 - 2 MB | FP16 | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
|
45 |
+
| Midas-V2 | SA8775 (Proxy) | SA8775P Proxy | QNN | 3.049 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
|
46 |
+
| Midas-V2 | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 3.228 ms | 0 - 2 MB | FP16 | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
|
47 |
+
| Midas-V2 | SA8650 (Proxy) | SA8650P Proxy | QNN | 3.049 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
|
48 |
+
| Midas-V2 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 4.752 ms | 0 - 91 MB | FP16 | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
|
49 |
+
| Midas-V2 | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 4.887 ms | 1 - 27 MB | FP16 | NPU | Use Export Script |
|
50 |
+
| Midas-V2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 2.133 ms | 0 - 38 MB | FP16 | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite) |
|
51 |
+
| Midas-V2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 2.164 ms | 0 - 22 MB | FP16 | NPU | Use Export Script |
|
52 |
+
| Midas-V2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 2.218 ms | 0 - 42 MB | FP16 | NPU | [Midas-V2.onnx](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.onnx) |
|
53 |
+
| Midas-V2 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 3.256 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
|
54 |
+
| Midas-V2 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 3.378 ms | 36 - 36 MB | FP16 | NPU | [Midas-V2.onnx](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.onnx) |
|
55 |
|
56 |
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
## Installation
|
60 |
|
|
|
110 |
```bash
|
111 |
python -m qai_hub_models.models.midas.export
|
112 |
```
|
|
|
113 |
```
|
114 |
+
Profiling Results
|
115 |
+
------------------------------------------------------------
|
116 |
+
Midas-V2
|
117 |
+
Device : Samsung Galaxy S23 (13)
|
118 |
+
Runtime : TFLITE
|
119 |
+
Estimated inference time (ms) : 3.2
|
120 |
+
Estimated peak memory usage (MB): [0, 2]
|
121 |
+
Total # Ops : 138
|
122 |
+
Compute Unit(s) : NPU (138 ops)
|
123 |
```
|
124 |
|
125 |
|
|
|
218 |
Get more details on Midas-V2's performance across various devices [here](https://aihub.qualcomm.com/models/midas).
|
219 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
220 |
|
221 |
+
|
222 |
## License
|
223 |
+
* The license for the original implementation of Midas-V2 can be found [here](https://github.com/isl-org/MiDaS/blob/master/LICENSE).
|
224 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
225 |
+
|
226 |
+
|
227 |
|
228 |
## References
|
229 |
* [Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer](https://arxiv.org/abs/1907.01341v3)
|
230 |
* [Source Model Implementation](https://github.com/isl-org/MiDaS)
|
231 |
|
232 |
+
|
233 |
+
|
234 |
## Community
|
235 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
236 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|