qaihm-bot commited on
Commit
871f9d3
·
verified ·
1 Parent(s): 631aeb2

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +39 -19
README.md CHANGED
@@ -15,7 +15,7 @@ tags:
15
 
16
  Midas is designed for estimating depth at each point in an image.
17
 
18
- This model is an implementation of Midas-V2-Quantized found [here](https://github.com/isl-org/MiDaS).
19
  This repository provides scripts to run Midas-V2-Quantized on Qualcomm® devices.
20
  More details on model performance across various devices, can be found
21
  [here](https://aihub.qualcomm.com/models/midas_quantized).
@@ -30,15 +30,31 @@ More details on model performance across various devices, can be found
30
  - Number of parameters: 16.6M
31
  - Model size: 16.6 MB
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
 
35
 
36
- | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
37
- | ---|---|---|---|---|---|---|---|
38
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.094 ms | 0 - 3 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite)
39
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.435 ms | 0 - 301 MB | INT8 | NPU | [Midas-V2-Quantized.so](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.so)
40
-
41
-
42
 
43
  ## Installation
44
 
@@ -94,16 +110,16 @@ device. This script does the following:
94
  ```bash
95
  python -m qai_hub_models.models.midas_quantized.export
96
  ```
97
-
98
  ```
99
- Profile Job summary of Midas-V2-Quantized
100
- --------------------------------------------------
101
- Device: Snapdragon X Elite CRD (11)
102
- Estimated Inference Time: 1.48 ms
103
- Estimated Peak Memory Range: 0.33-0.33 MB
104
- Compute Units: NPU (146) | Total (146)
105
-
106
-
 
107
  ```
108
 
109
 
@@ -142,15 +158,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
142
  Get more details on Midas-V2-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/midas_quantized).
143
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
144
 
 
145
  ## License
146
- - The license for the original implementation of Midas-V2-Quantized can be found
147
- [here](https://github.com/isl-org/MiDaS/blob/master/LICENSE).
148
- - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
 
149
 
150
  ## References
151
  * [Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer](https://arxiv.org/abs/1907.01341v3)
152
  * [Source Model Implementation](https://github.com/isl-org/MiDaS)
153
 
 
 
154
  ## Community
155
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
156
  * For questions or feedback please [reach out to us](mailto:[email protected]).
 
15
 
16
  Midas is designed for estimating depth at each point in an image.
17
 
18
+ This model is an implementation of Midas-V2-Quantized found [here]({source_repo}).
19
  This repository provides scripts to run Midas-V2-Quantized on Qualcomm® devices.
20
  More details on model performance across various devices, can be found
21
  [here](https://aihub.qualcomm.com/models/midas_quantized).
 
30
  - Number of parameters: 16.6M
31
  - Model size: 16.6 MB
32
 
33
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
34
+ |---|---|---|---|---|---|---|---|---|
35
+ | Midas-V2-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 1.112 ms | 0 - 8 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
36
+ | Midas-V2-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 1.434 ms | 0 - 52 MB | INT8 | NPU | [Midas-V2-Quantized.so](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.so) |
37
+ | Midas-V2-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.774 ms | 0 - 89 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
38
+ | Midas-V2-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 1.013 ms | 0 - 21 MB | INT8 | NPU | [Midas-V2-Quantized.so](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.so) |
39
+ | Midas-V2-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 3.827 ms | 0 - 50 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
40
+ | Midas-V2-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 6.19 ms | 0 - 8 MB | INT8 | NPU | Use Export Script |
41
+ | Midas-V2-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 15.542 ms | 0 - 6 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
42
+ | Midas-V2-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 1.083 ms | 0 - 222 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
43
+ | Midas-V2-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 1.306 ms | 0 - 1 MB | INT8 | NPU | Use Export Script |
44
+ | Midas-V2-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 1.092 ms | 0 - 5 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
45
+ | Midas-V2-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 1.32 ms | 0 - 1 MB | INT8 | NPU | Use Export Script |
46
+ | Midas-V2-Quantized | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 1.089 ms | 0 - 2 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
47
+ | Midas-V2-Quantized | SA8775 (Proxy) | SA8775P Proxy | QNN | 1.315 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
48
+ | Midas-V2-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 1.092 ms | 0 - 2 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
49
+ | Midas-V2-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 1.319 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
50
+ | Midas-V2-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.431 ms | 0 - 88 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
51
+ | Midas-V2-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 1.772 ms | 0 - 25 MB | INT8 | NPU | Use Export Script |
52
+ | Midas-V2-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.731 ms | 0 - 47 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
53
+ | Midas-V2-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 1.001 ms | 0 - 21 MB | INT8 | NPU | Use Export Script |
54
+ | Midas-V2-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 1.461 ms | 0 - 0 MB | INT8 | NPU | Use Export Script |
55
 
56
 
57
 
 
 
 
 
 
 
58
 
59
  ## Installation
60
 
 
110
  ```bash
111
  python -m qai_hub_models.models.midas_quantized.export
112
  ```
 
113
  ```
114
+ Profiling Results
115
+ ------------------------------------------------------------
116
+ Midas-V2-Quantized
117
+ Device : Samsung Galaxy S23 (13)
118
+ Runtime : TFLITE
119
+ Estimated inference time (ms) : 1.1
120
+ Estimated peak memory usage (MB): [0, 8]
121
+ Total # Ops : 145
122
+ Compute Unit(s) : NPU (145 ops)
123
  ```
124
 
125
 
 
158
  Get more details on Midas-V2-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/midas_quantized).
159
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
160
 
161
+
162
  ## License
163
+ * The license for the original implementation of Midas-V2-Quantized can be found [here](https://github.com/isl-org/MiDaS/blob/master/LICENSE).
164
+ * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
165
+
166
+
167
 
168
  ## References
169
  * [Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer](https://arxiv.org/abs/1907.01341v3)
170
  * [Source Model Implementation](https://github.com/isl-org/MiDaS)
171
 
172
+
173
+
174
  ## Community
175
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
176
  * For questions or feedback please [reach out to us](mailto:[email protected]).