Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -15,7 +15,7 @@ tags:
|
|
15 |
|
16 |
Midas is designed for estimating depth at each point in an image.
|
17 |
|
18 |
-
This model is an implementation of Midas-V2-Quantized found [here](
|
19 |
This repository provides scripts to run Midas-V2-Quantized on Qualcomm® devices.
|
20 |
More details on model performance across various devices, can be found
|
21 |
[here](https://aihub.qualcomm.com/models/midas_quantized).
|
@@ -30,15 +30,31 @@ More details on model performance across various devices, can be found
|
|
30 |
- Number of parameters: 16.6M
|
31 |
- Model size: 16.6 MB
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
|
35 |
|
36 |
-
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
-
| ---|---|---|---|---|---|---|---|
|
38 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.094 ms | 0 - 3 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite)
|
39 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.435 ms | 0 - 301 MB | INT8 | NPU | [Midas-V2-Quantized.so](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.so)
|
40 |
-
|
41 |
-
|
42 |
|
43 |
## Installation
|
44 |
|
@@ -94,16 +110,16 @@ device. This script does the following:
|
|
94 |
```bash
|
95 |
python -m qai_hub_models.models.midas_quantized.export
|
96 |
```
|
97 |
-
|
98 |
```
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
107 |
```
|
108 |
|
109 |
|
@@ -142,15 +158,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
142 |
Get more details on Midas-V2-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/midas_quantized).
|
143 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
144 |
|
|
|
145 |
## License
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
149 |
|
150 |
## References
|
151 |
* [Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer](https://arxiv.org/abs/1907.01341v3)
|
152 |
* [Source Model Implementation](https://github.com/isl-org/MiDaS)
|
153 |
|
|
|
|
|
154 |
## Community
|
155 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
156 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
|
|
15 |
|
16 |
Midas is designed for estimating depth at each point in an image.
|
17 |
|
18 |
+
This model is an implementation of Midas-V2-Quantized found [here]({source_repo}).
|
19 |
This repository provides scripts to run Midas-V2-Quantized on Qualcomm® devices.
|
20 |
More details on model performance across various devices, can be found
|
21 |
[here](https://aihub.qualcomm.com/models/midas_quantized).
|
|
|
30 |
- Number of parameters: 16.6M
|
31 |
- Model size: 16.6 MB
|
32 |
|
33 |
+
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
34 |
+
|---|---|---|---|---|---|---|---|---|
|
35 |
+
| Midas-V2-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 1.112 ms | 0 - 8 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
|
36 |
+
| Midas-V2-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 1.434 ms | 0 - 52 MB | INT8 | NPU | [Midas-V2-Quantized.so](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.so) |
|
37 |
+
| Midas-V2-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.774 ms | 0 - 89 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
|
38 |
+
| Midas-V2-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 1.013 ms | 0 - 21 MB | INT8 | NPU | [Midas-V2-Quantized.so](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.so) |
|
39 |
+
| Midas-V2-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 3.827 ms | 0 - 50 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
|
40 |
+
| Midas-V2-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 6.19 ms | 0 - 8 MB | INT8 | NPU | Use Export Script |
|
41 |
+
| Midas-V2-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 15.542 ms | 0 - 6 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
|
42 |
+
| Midas-V2-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 1.083 ms | 0 - 222 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
|
43 |
+
| Midas-V2-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 1.306 ms | 0 - 1 MB | INT8 | NPU | Use Export Script |
|
44 |
+
| Midas-V2-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 1.092 ms | 0 - 5 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
|
45 |
+
| Midas-V2-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 1.32 ms | 0 - 1 MB | INT8 | NPU | Use Export Script |
|
46 |
+
| Midas-V2-Quantized | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 1.089 ms | 0 - 2 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
|
47 |
+
| Midas-V2-Quantized | SA8775 (Proxy) | SA8775P Proxy | QNN | 1.315 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
|
48 |
+
| Midas-V2-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 1.092 ms | 0 - 2 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
|
49 |
+
| Midas-V2-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 1.319 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
|
50 |
+
| Midas-V2-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.431 ms | 0 - 88 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
|
51 |
+
| Midas-V2-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 1.772 ms | 0 - 25 MB | INT8 | NPU | Use Export Script |
|
52 |
+
| Midas-V2-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.731 ms | 0 - 47 MB | INT8 | NPU | [Midas-V2-Quantized.tflite](https://huggingface.co/qualcomm/Midas-V2-Quantized/blob/main/Midas-V2-Quantized.tflite) |
|
53 |
+
| Midas-V2-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 1.001 ms | 0 - 21 MB | INT8 | NPU | Use Export Script |
|
54 |
+
| Midas-V2-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 1.461 ms | 0 - 0 MB | INT8 | NPU | Use Export Script |
|
55 |
|
56 |
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
## Installation
|
60 |
|
|
|
110 |
```bash
|
111 |
python -m qai_hub_models.models.midas_quantized.export
|
112 |
```
|
|
|
113 |
```
|
114 |
+
Profiling Results
|
115 |
+
------------------------------------------------------------
|
116 |
+
Midas-V2-Quantized
|
117 |
+
Device : Samsung Galaxy S23 (13)
|
118 |
+
Runtime : TFLITE
|
119 |
+
Estimated inference time (ms) : 1.1
|
120 |
+
Estimated peak memory usage (MB): [0, 8]
|
121 |
+
Total # Ops : 145
|
122 |
+
Compute Unit(s) : NPU (145 ops)
|
123 |
```
|
124 |
|
125 |
|
|
|
158 |
Get more details on Midas-V2-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/midas_quantized).
|
159 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
160 |
|
161 |
+
|
162 |
## License
|
163 |
+
* The license for the original implementation of Midas-V2-Quantized can be found [here](https://github.com/isl-org/MiDaS/blob/master/LICENSE).
|
164 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
165 |
+
|
166 |
+
|
167 |
|
168 |
## References
|
169 |
* [Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer](https://arxiv.org/abs/1907.01341v3)
|
170 |
* [Source Model Implementation](https://github.com/isl-org/MiDaS)
|
171 |
|
172 |
+
|
173 |
+
|
174 |
## Community
|
175 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
176 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|