Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -36,45 +36,44 @@ More details on model performance across various devices, can be found
|
|
36 |
|
37 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
|---|---|---|---|---|---|---|---|---|
|
39 |
-
| FFNet-40S | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 45.
|
40 |
-
| FFNet-40S | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN |
|
41 |
-
| FFNet-40S | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX |
|
42 |
-
| FFNet-40S | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 29.
|
43 |
-
| FFNet-40S | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 37.
|
44 |
-
| FFNet-40S | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX |
|
45 |
-
| FFNet-40S | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE |
|
46 |
-
| FFNet-40S | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN |
|
47 |
-
| FFNet-40S | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX |
|
48 |
-
| FFNet-40S | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 44.
|
49 |
-
| FFNet-40S | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 41.
|
50 |
-
| FFNet-40S | SA7255P ADP | SA7255P | TFLITE |
|
51 |
-
| FFNet-40S | SA7255P ADP | SA7255P | QNN | 842.
|
52 |
-
| FFNet-40S | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 45.
|
53 |
-
| FFNet-40S | SA8255 (Proxy) | SA8255P Proxy | QNN | 41.
|
54 |
-
| FFNet-40S | SA8295P ADP | SA8295P | TFLITE | 66.
|
55 |
-
| FFNet-40S | SA8295P ADP | SA8295P | QNN | 64.
|
56 |
-
| FFNet-40S | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 45.
|
57 |
-
| FFNet-40S | SA8650 (Proxy) | SA8650P Proxy | QNN | 41.
|
58 |
-
| FFNet-40S | SA8775P ADP | SA8775P | TFLITE | 71.
|
59 |
-
| FFNet-40S | SA8775P ADP | SA8775P | QNN | 65.
|
60 |
-
| FFNet-40S | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 57.
|
61 |
-
| FFNet-40S | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 69.
|
62 |
-
| FFNet-40S | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 42.
|
63 |
-
| FFNet-40S | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 38.
|
64 |
|
65 |
|
66 |
|
67 |
|
68 |
## Installation
|
69 |
|
70 |
-
This model can be installed as a Python package via pip.
|
71 |
|
|
|
72 |
```bash
|
73 |
-
pip install "qai-hub-models[
|
74 |
```
|
75 |
|
76 |
|
77 |
-
|
78 |
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
79 |
|
80 |
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
@@ -125,8 +124,8 @@ Profiling Results
|
|
125 |
FFNet-40S
|
126 |
Device : Samsung Galaxy S23 (13)
|
127 |
Runtime : TFLITE
|
128 |
-
Estimated inference time (ms) : 45.
|
129 |
-
Estimated peak memory usage (MB): [
|
130 |
Total # Ops : 94
|
131 |
Compute Unit(s) : NPU (94 ops)
|
132 |
```
|
@@ -153,7 +152,7 @@ from qai_hub_models.models.ffnet_40s import Model
|
|
153 |
torch_model = Model.from_pretrained()
|
154 |
|
155 |
# Device
|
156 |
-
device = hub.Device("Samsung Galaxy
|
157 |
|
158 |
# Trace model
|
159 |
input_shape = torch_model.get_input_spec()
|
@@ -245,7 +244,8 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
245 |
|
246 |
|
247 |
## License
|
248 |
-
* The license for the original implementation of FFNet-40S can be found
|
|
|
249 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
250 |
|
251 |
|
|
|
36 |
|
37 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
|---|---|---|---|---|---|---|---|---|
|
39 |
+
| FFNet-40S | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 45.018 ms | 2 - 26 MB | FP16 | NPU | [FFNet-40S.tflite](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.tflite) |
|
40 |
+
| FFNet-40S | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 55.016 ms | 24 - 41 MB | FP16 | NPU | [FFNet-40S.so](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.so) |
|
41 |
+
| FFNet-40S | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 34.72 ms | 29 - 119 MB | FP16 | NPU | [FFNet-40S.onnx](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.onnx) |
|
42 |
+
| FFNet-40S | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 29.645 ms | 1 - 50 MB | FP16 | NPU | [FFNet-40S.tflite](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.tflite) |
|
43 |
+
| FFNet-40S | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 37.001 ms | 9 - 49 MB | FP16 | NPU | [FFNet-40S.so](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.so) |
|
44 |
+
| FFNet-40S | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 26.015 ms | 30 - 76 MB | FP16 | NPU | [FFNet-40S.onnx](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.onnx) |
|
45 |
+
| FFNet-40S | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 29.038 ms | 9 - 58 MB | FP16 | NPU | [FFNet-40S.tflite](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.tflite) |
|
46 |
+
| FFNet-40S | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 33.165 ms | 24 - 67 MB | FP16 | NPU | Use Export Script |
|
47 |
+
| FFNet-40S | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 23.801 ms | 28 - 70 MB | FP16 | NPU | [FFNet-40S.onnx](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.onnx) |
|
48 |
+
| FFNet-40S | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 44.885 ms | 2 - 24 MB | FP16 | NPU | [FFNet-40S.tflite](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.tflite) |
|
49 |
+
| FFNet-40S | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 41.396 ms | 24 - 27 MB | FP16 | NPU | Use Export Script |
|
50 |
+
| FFNet-40S | SA7255P ADP | SA7255P | TFLITE | 854.012 ms | 2 - 45 MB | FP16 | NPU | [FFNet-40S.tflite](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.tflite) |
|
51 |
+
| FFNet-40S | SA7255P ADP | SA7255P | QNN | 842.577 ms | 21 - 31 MB | FP16 | NPU | Use Export Script |
|
52 |
+
| FFNet-40S | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 45.077 ms | 2 - 21 MB | FP16 | NPU | [FFNet-40S.tflite](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.tflite) |
|
53 |
+
| FFNet-40S | SA8255 (Proxy) | SA8255P Proxy | QNN | 41.467 ms | 24 - 26 MB | FP16 | NPU | Use Export Script |
|
54 |
+
| FFNet-40S | SA8295P ADP | SA8295P | TFLITE | 66.248 ms | 2 - 45 MB | FP16 | NPU | [FFNet-40S.tflite](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.tflite) |
|
55 |
+
| FFNet-40S | SA8295P ADP | SA8295P | QNN | 64.495 ms | 24 - 38 MB | FP16 | NPU | Use Export Script |
|
56 |
+
| FFNet-40S | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 45.311 ms | 2 - 24 MB | FP16 | NPU | [FFNet-40S.tflite](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.tflite) |
|
57 |
+
| FFNet-40S | SA8650 (Proxy) | SA8650P Proxy | QNN | 41.258 ms | 24 - 27 MB | FP16 | NPU | Use Export Script |
|
58 |
+
| FFNet-40S | SA8775P ADP | SA8775P | TFLITE | 71.761 ms | 2 - 45 MB | FP16 | NPU | [FFNet-40S.tflite](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.tflite) |
|
59 |
+
| FFNet-40S | SA8775P ADP | SA8775P | QNN | 65.652 ms | 24 - 34 MB | FP16 | NPU | Use Export Script |
|
60 |
+
| FFNet-40S | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 57.971 ms | 2 - 49 MB | FP16 | NPU | [FFNet-40S.tflite](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.tflite) |
|
61 |
+
| FFNet-40S | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 69.253 ms | 23 - 60 MB | FP16 | NPU | Use Export Script |
|
62 |
+
| FFNet-40S | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 42.478 ms | 24 - 24 MB | FP16 | NPU | Use Export Script |
|
63 |
+
| FFNet-40S | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 38.729 ms | 24 - 24 MB | FP16 | NPU | [FFNet-40S.onnx](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.onnx) |
|
64 |
|
65 |
|
66 |
|
67 |
|
68 |
## Installation
|
69 |
|
|
|
70 |
|
71 |
+
Install the package via pip:
|
72 |
```bash
|
73 |
+
pip install "qai-hub-models[ffnet-40s]"
|
74 |
```
|
75 |
|
76 |
|
|
|
77 |
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
78 |
|
79 |
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
|
|
124 |
FFNet-40S
|
125 |
Device : Samsung Galaxy S23 (13)
|
126 |
Runtime : TFLITE
|
127 |
+
Estimated inference time (ms) : 45.0
|
128 |
+
Estimated peak memory usage (MB): [2, 26]
|
129 |
Total # Ops : 94
|
130 |
Compute Unit(s) : NPU (94 ops)
|
131 |
```
|
|
|
152 |
torch_model = Model.from_pretrained()
|
153 |
|
154 |
# Device
|
155 |
+
device = hub.Device("Samsung Galaxy S24")
|
156 |
|
157 |
# Trace model
|
158 |
input_shape = torch_model.get_input_spec()
|
|
|
244 |
|
245 |
|
246 |
## License
|
247 |
+
* The license for the original implementation of FFNet-40S can be found
|
248 |
+
[here](https://github.com/Qualcomm-AI-research/FFNet/blob/master/LICENSE).
|
249 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
250 |
|
251 |
|