v0.30.5
Browse filesSee https://github.com/quic/ai-hub-models/releases/v0.30.5 for changelog.
README.md
CHANGED
@@ -36,10 +36,10 @@ More details on model performance across various devices, can be found
|
|
36 |
|
37 |
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|
38 |
|---|---|---|---|---|---|---|---|---|
|
39 |
-
| EfficientViT-l2-seg | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX |
|
40 |
-
| EfficientViT-l2-seg | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX |
|
41 |
-
| EfficientViT-l2-seg | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX |
|
42 |
-
| EfficientViT-l2-seg | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX |
|
43 |
|
44 |
|
45 |
|
@@ -103,8 +103,8 @@ Profiling Results
|
|
103 |
EfficientViT-l2-seg
|
104 |
Device : cs_8_gen_2 (ANDROID 13)
|
105 |
Runtime : ONNX
|
106 |
-
Estimated inference time (ms) :
|
107 |
-
Estimated peak memory usage (MB): [
|
108 |
Total # Ops : 464
|
109 |
Compute Unit(s) : npu (462 ops) gpu (0 ops) cpu (2 ops)
|
110 |
```
|
@@ -193,13 +193,13 @@ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
|
193 |
You can also run the demo on-device.
|
194 |
|
195 |
```bash
|
196 |
-
python -m qai_hub_models.models.efficientvit_l2_seg.demo --on-device
|
197 |
```
|
198 |
|
199 |
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
|
200 |
environment, please add the following to your cell (instead of the above).
|
201 |
```
|
202 |
-
%run -m qai_hub_models.models.efficientvit_l2_seg.demo -- --on-device
|
203 |
```
|
204 |
|
205 |
|
|
|
36 |
|
37 |
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|
38 |
|---|---|---|---|---|---|---|---|---|
|
39 |
+
| EfficientViT-l2-seg | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 1916.068 ms | 26 - 324 MB | NPU | [EfficientViT-l2-seg.onnx](https://huggingface.co/qualcomm/EfficientViT-l2-seg/blob/main/EfficientViT-l2-seg.onnx) |
|
40 |
+
| EfficientViT-l2-seg | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 2084.291 ms | 128 - 1009 MB | NPU | [EfficientViT-l2-seg.onnx](https://huggingface.co/qualcomm/EfficientViT-l2-seg/blob/main/EfficientViT-l2-seg.onnx) |
|
41 |
+
| EfficientViT-l2-seg | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 1203.099 ms | 107 - 1061 MB | NPU | [EfficientViT-l2-seg.onnx](https://huggingface.co/qualcomm/EfficientViT-l2-seg/blob/main/EfficientViT-l2-seg.onnx) |
|
42 |
+
| EfficientViT-l2-seg | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 2376.256 ms | 144 - 144 MB | NPU | [EfficientViT-l2-seg.onnx](https://huggingface.co/qualcomm/EfficientViT-l2-seg/blob/main/EfficientViT-l2-seg.onnx) |
|
43 |
|
44 |
|
45 |
|
|
|
103 |
EfficientViT-l2-seg
|
104 |
Device : cs_8_gen_2 (ANDROID 13)
|
105 |
Runtime : ONNX
|
106 |
+
Estimated inference time (ms) : 1916.1
|
107 |
+
Estimated peak memory usage (MB): [26, 324]
|
108 |
Total # Ops : 464
|
109 |
Compute Unit(s) : npu (462 ops) gpu (0 ops) cpu (2 ops)
|
110 |
```
|
|
|
193 |
You can also run the demo on-device.
|
194 |
|
195 |
```bash
|
196 |
+
python -m qai_hub_models.models.efficientvit_l2_seg.demo --eval-mode on-device
|
197 |
```
|
198 |
|
199 |
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
|
200 |
environment, please add the following to your cell (instead of the above).
|
201 |
```
|
202 |
+
%run -m qai_hub_models.models.efficientvit_l2_seg.demo -- --eval-mode on-device
|
203 |
```
|
204 |
|
205 |
|