Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -35,15 +35,16 @@ More details on model performance across various devices, can be found
|
|
| 35 |
|
| 36 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
| 37 |
|---|---|---|---|---|---|---|---|---|
|
| 38 |
-
| DeepLabV3-ResNet50 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE |
|
| 39 |
-
| DeepLabV3-ResNet50 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 206.
|
| 40 |
-
| DeepLabV3-ResNet50 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE |
|
| 41 |
-
| DeepLabV3-ResNet50 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE |
|
| 42 |
-
| DeepLabV3-ResNet50 |
|
| 43 |
-
| DeepLabV3-ResNet50 |
|
| 44 |
-
| DeepLabV3-ResNet50 |
|
| 45 |
-
| DeepLabV3-ResNet50 |
|
| 46 |
-
| DeepLabV3-ResNet50 |
|
|
|
|
| 47 |
|
| 48 |
|
| 49 |
|
|
@@ -107,8 +108,8 @@ Profiling Results
|
|
| 107 |
DeepLabV3-ResNet50
|
| 108 |
Device : Samsung Galaxy S23 (13)
|
| 109 |
Runtime : TFLITE
|
| 110 |
-
Estimated inference time (ms) :
|
| 111 |
-
Estimated peak memory usage (MB): [0,
|
| 112 |
Total # Ops : 100
|
| 113 |
Compute Unit(s) : GPU (98 ops) CPU (2 ops)
|
| 114 |
```
|
|
@@ -129,13 +130,29 @@ in memory using the `jit.trace` and then call the `submit_compile_job` API.
|
|
| 129 |
import torch
|
| 130 |
|
| 131 |
import qai_hub as hub
|
| 132 |
-
from qai_hub_models.models.deeplabv3_resnet50 import
|
| 133 |
|
| 134 |
# Load the model
|
|
|
|
| 135 |
|
| 136 |
# Device
|
| 137 |
device = hub.Device("Samsung Galaxy S23")
|
| 138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
```
|
| 141 |
|
|
|
|
| 35 |
|
| 36 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
| 37 |
|---|---|---|---|---|---|---|---|---|
|
| 38 |
+
| DeepLabV3-ResNet50 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 290.866 ms | 0 - 164 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
| 39 |
+
| DeepLabV3-ResNet50 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 206.66 ms | 21 - 46 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
| 40 |
+
| DeepLabV3-ResNet50 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 216.408 ms | 12 - 28 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
| 41 |
+
| DeepLabV3-ResNet50 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 291.878 ms | 0 - 142 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
| 42 |
+
| DeepLabV3-ResNet50 | SA7255P ADP | SA7255P | TFLITE | 2151.421 ms | 21 - 42 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
| 43 |
+
| DeepLabV3-ResNet50 | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 291.325 ms | 6 - 175 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
| 44 |
+
| DeepLabV3-ResNet50 | SA8295P ADP | SA8295P | TFLITE | 281.323 ms | 6 - 26 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
| 45 |
+
| DeepLabV3-ResNet50 | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 291.54 ms | 0 - 161 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
| 46 |
+
| DeepLabV3-ResNet50 | SA8775P ADP | SA8775P | TFLITE | 592.859 ms | 22 - 44 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
| 47 |
+
| DeepLabV3-ResNet50 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 408.225 ms | 23 - 52 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
| 48 |
|
| 49 |
|
| 50 |
|
|
|
|
| 108 |
DeepLabV3-ResNet50
|
| 109 |
Device : Samsung Galaxy S23 (13)
|
| 110 |
Runtime : TFLITE
|
| 111 |
+
Estimated inference time (ms) : 290.9
|
| 112 |
+
Estimated peak memory usage (MB): [0, 164]
|
| 113 |
Total # Ops : 100
|
| 114 |
Compute Unit(s) : GPU (98 ops) CPU (2 ops)
|
| 115 |
```
|
|
|
|
| 130 |
import torch
|
| 131 |
|
| 132 |
import qai_hub as hub
|
| 133 |
+
from qai_hub_models.models.deeplabv3_resnet50 import Model
|
| 134 |
|
| 135 |
# Load the model
|
| 136 |
+
torch_model = Model.from_pretrained()
|
| 137 |
|
| 138 |
# Device
|
| 139 |
device = hub.Device("Samsung Galaxy S23")
|
| 140 |
|
| 141 |
+
# Trace model
|
| 142 |
+
input_shape = torch_model.get_input_spec()
|
| 143 |
+
sample_inputs = torch_model.sample_inputs()
|
| 144 |
+
|
| 145 |
+
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
|
| 146 |
+
|
| 147 |
+
# Compile model on a specific device
|
| 148 |
+
compile_job = hub.submit_compile_job(
|
| 149 |
+
model=pt_model,
|
| 150 |
+
device=device,
|
| 151 |
+
input_specs=torch_model.get_input_spec(),
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
# Get target model to run on-device
|
| 155 |
+
target_model = compile_job.get_target_model()
|
| 156 |
|
| 157 |
```
|
| 158 |
|