Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -30,10 +30,13 @@ More details on model performance across various devices, can be found
|
|
30 |
- Model size: 58.0 MB
|
31 |
|
32 |
|
|
|
|
|
33 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
34 |
| ---|---|---|---|---|---|---|---|
|
35 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 164.
|
36 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 165.
|
|
|
37 |
|
38 |
|
39 |
## Installation
|
@@ -94,15 +97,17 @@ python -m qai_hub_models.models.aotgan.export
|
|
94 |
Profile Job summary of AOT-GAN
|
95 |
--------------------------------------------------
|
96 |
Device: Snapdragon X Elite CRD (11)
|
97 |
-
Estimated Inference Time: 145.
|
98 |
Estimated Peak Memory Range: 4.01-4.01 MB
|
99 |
Compute Units: NPU (275) | Total (275)
|
100 |
|
101 |
|
102 |
```
|
|
|
|
|
103 |
## How does this work?
|
104 |
|
105 |
-
This [export script](https://
|
106 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
107 |
on-device. Lets go through each step below in detail:
|
108 |
|
@@ -179,6 +184,7 @@ spot check the output with expected output.
|
|
179 |
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
180 |
|
181 |
|
|
|
182 |
## Run demo on a cloud-hosted device
|
183 |
|
184 |
You can also run the demo on-device.
|
@@ -215,7 +221,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
215 |
## License
|
216 |
- The license for the original implementation of AOT-GAN can be found
|
217 |
[here](https://github.com/taki0112/AttnGAN-Tensorflow/blob/master/LICENSE).
|
218 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
219 |
|
220 |
## References
|
221 |
* [Aggregated Contextual Transformations for High-Resolution Image Inpainting](https://arxiv.org/abs/2104.01431)
|
|
|
30 |
- Model size: 58.0 MB
|
31 |
|
32 |
|
33 |
+
|
34 |
+
|
35 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
36 |
| ---|---|---|---|---|---|---|---|
|
37 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 164.177 ms | 3 - 6 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite)
|
38 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 165.278 ms | 4 - 31 MB | FP16 | NPU | [AOT-GAN.so](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.so)
|
39 |
+
|
40 |
|
41 |
|
42 |
## Installation
|
|
|
97 |
Profile Job summary of AOT-GAN
|
98 |
--------------------------------------------------
|
99 |
Device: Snapdragon X Elite CRD (11)
|
100 |
+
Estimated Inference Time: 145.57 ms
|
101 |
Estimated Peak Memory Range: 4.01-4.01 MB
|
102 |
Compute Units: NPU (275) | Total (275)
|
103 |
|
104 |
|
105 |
```
|
106 |
+
|
107 |
+
|
108 |
## How does this work?
|
109 |
|
110 |
+
This [export script](https://aihub.qualcomm.com/models/aotgan/qai_hub_models/models/AOT-GAN/export.py)
|
111 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
112 |
on-device. Lets go through each step below in detail:
|
113 |
|
|
|
184 |
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
185 |
|
186 |
|
187 |
+
|
188 |
## Run demo on a cloud-hosted device
|
189 |
|
190 |
You can also run the demo on-device.
|
|
|
221 |
## License
|
222 |
- The license for the original implementation of AOT-GAN can be found
|
223 |
[here](https://github.com/taki0112/AttnGAN-Tensorflow/blob/master/LICENSE).
|
224 |
+
- The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
225 |
|
226 |
## References
|
227 |
* [Aggregated Contextual Transformations for High-Resolution Image Inpainting](https://arxiv.org/abs/2104.01431)
|