qaihm-bot commited on
Commit
c2aef02
·
verified ·
1 Parent(s): f1342bd

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +11 -5
README.md CHANGED
@@ -30,10 +30,13 @@ More details on model performance across various devices, can be found
30
  - Model size: 58.0 MB
31
 
32
 
 
 
33
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
34
  | ---|---|---|---|---|---|---|---|
35
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 164.624 ms | 5 - 8 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite)
36
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 165.008 ms | 4 - 31 MB | FP16 | NPU | [AOT-GAN.so](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.so)
 
37
 
38
 
39
  ## Installation
@@ -94,15 +97,17 @@ python -m qai_hub_models.models.aotgan.export
94
  Profile Job summary of AOT-GAN
95
  --------------------------------------------------
96
  Device: Snapdragon X Elite CRD (11)
97
- Estimated Inference Time: 145.50 ms
98
  Estimated Peak Memory Range: 4.01-4.01 MB
99
  Compute Units: NPU (275) | Total (275)
100
 
101
 
102
  ```
 
 
103
  ## How does this work?
104
 
105
- This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/AOT-GAN/export.py)
106
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
107
  on-device. Lets go through each step below in detail:
108
 
@@ -179,6 +184,7 @@ spot check the output with expected output.
179
  AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
180
 
181
 
 
182
  ## Run demo on a cloud-hosted device
183
 
184
  You can also run the demo on-device.
@@ -215,7 +221,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
215
  ## License
216
  - The license for the original implementation of AOT-GAN can be found
217
  [here](https://github.com/taki0112/AttnGAN-Tensorflow/blob/master/LICENSE).
218
- - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
219
 
220
  ## References
221
  * [Aggregated Contextual Transformations for High-Resolution Image Inpainting](https://arxiv.org/abs/2104.01431)
 
30
  - Model size: 58.0 MB
31
 
32
 
33
+
34
+
35
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
36
  | ---|---|---|---|---|---|---|---|
37
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 164.177 ms | 3 - 6 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite)
38
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 165.278 ms | 4 - 31 MB | FP16 | NPU | [AOT-GAN.so](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.so)
39
+
40
 
41
 
42
  ## Installation
 
97
  Profile Job summary of AOT-GAN
98
  --------------------------------------------------
99
  Device: Snapdragon X Elite CRD (11)
100
+ Estimated Inference Time: 145.57 ms
101
  Estimated Peak Memory Range: 4.01-4.01 MB
102
  Compute Units: NPU (275) | Total (275)
103
 
104
 
105
  ```
106
+
107
+
108
  ## How does this work?
109
 
110
+ This [export script](https://aihub.qualcomm.com/models/aotgan/qai_hub_models/models/AOT-GAN/export.py)
111
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
112
  on-device. Lets go through each step below in detail:
113
 
 
184
  AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
185
 
186
 
187
+
188
  ## Run demo on a cloud-hosted device
189
 
190
  You can also run the demo on-device.
 
221
  ## License
222
  - The license for the original implementation of AOT-GAN can be found
223
  [here](https://github.com/taki0112/AttnGAN-Tensorflow/blob/master/LICENSE).
224
+ - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
225
 
226
  ## References
227
  * [Aggregated Contextual Transformations for High-Resolution Image Inpainting](https://arxiv.org/abs/2104.01431)