qaihm-bot commited on
Commit
8bd21c3
·
verified ·
1 Parent(s): b366101

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +36 -19
README.md CHANGED
@@ -14,7 +14,7 @@ tags:
14
 
15
  AOT-GAN is a machine learning model that allows to erase and in-paint part of given input image.
16
 
17
- This model is an implementation of AOT-GAN found [here](https://github.com/researchmm/AOT-GAN-for-Inpainting).
18
  This repository provides scripts to run AOT-GAN on Qualcomm® devices.
19
  More details on model performance across various devices, can be found
20
  [here](https://aihub.qualcomm.com/models/aotgan).
@@ -29,15 +29,28 @@ More details on model performance across various devices, can be found
29
  - Number of parameters: 15.2M
30
  - Model size: 58.0 MB
31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
 
34
 
35
- | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
36
- | ---|---|---|---|---|---|---|---|
37
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 153.234 ms | 3 - 5 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite)
38
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 153.843 ms | 4 - 22 MB | FP16 | NPU | [AOT-GAN.so](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.so)
39
-
40
-
41
 
42
  ## Installation
43
 
@@ -92,16 +105,16 @@ device. This script does the following:
92
  ```bash
93
  python -m qai_hub_models.models.aotgan.export
94
  ```
95
-
96
  ```
97
- Profile Job summary of AOT-GAN
98
- --------------------------------------------------
99
- Device: Snapdragon X Elite CRD (11)
100
- Estimated Inference Time: 96.41 ms
101
- Estimated Peak Memory Range: 4.01-4.01 MB
102
- Compute Units: NPU (274) | Total (274)
103
-
104
-
 
105
  ```
106
 
107
 
@@ -200,15 +213,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
200
  Get more details on AOT-GAN's performance across various devices [here](https://aihub.qualcomm.com/models/aotgan).
201
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
202
 
 
203
  ## License
204
- - The license for the original implementation of AOT-GAN can be found
205
- [here](https://github.com/taki0112/AttnGAN-Tensorflow/blob/master/LICENSE).
206
- - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
 
207
 
208
  ## References
209
  * [Aggregated Contextual Transformations for High-Resolution Image Inpainting](https://arxiv.org/abs/2104.01431)
210
  * [Source Model Implementation](https://github.com/researchmm/AOT-GAN-for-Inpainting)
211
 
 
 
212
  ## Community
213
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
214
  * For questions or feedback please [reach out to us](mailto:[email protected]).
 
14
 
15
  AOT-GAN is a machine learning model that allows to erase and in-paint part of given input image.
16
 
17
+ This model is an implementation of AOT-GAN found [here]({source_repo}).
18
  This repository provides scripts to run AOT-GAN on Qualcomm® devices.
19
  More details on model performance across various devices, can be found
20
  [here](https://aihub.qualcomm.com/models/aotgan).
 
29
  - Number of parameters: 15.2M
30
  - Model size: 58.0 MB
31
 
32
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
33
+ |---|---|---|---|---|---|---|---|---|
34
+ | AOT-GAN | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 152.996 ms | 4 - 7 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
35
+ | AOT-GAN | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 153.279 ms | 4 - 24 MB | FP16 | NPU | [AOT-GAN.so](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.so) |
36
+ | AOT-GAN | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 120.324 ms | 3 - 215 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
37
+ | AOT-GAN | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 139.029 ms | 4 - 61 MB | FP16 | NPU | [AOT-GAN.so](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.so) |
38
+ | AOT-GAN | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 152.722 ms | 3 - 6 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
39
+ | AOT-GAN | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 92.37 ms | 4 - 5 MB | FP16 | NPU | Use Export Script |
40
+ | AOT-GAN | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 153.035 ms | 3 - 6 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
41
+ | AOT-GAN | SA8255 (Proxy) | SA8255P Proxy | QNN | 92.574 ms | 4 - 6 MB | FP16 | NPU | Use Export Script |
42
+ | AOT-GAN | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 152.757 ms | 3 - 5 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
43
+ | AOT-GAN | SA8775 (Proxy) | SA8775P Proxy | QNN | 93.61 ms | 4 - 6 MB | FP16 | NPU | Use Export Script |
44
+ | AOT-GAN | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 152.642 ms | 3 - 5 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
45
+ | AOT-GAN | SA8650 (Proxy) | SA8650P Proxy | QNN | 92.421 ms | 4 - 5 MB | FP16 | NPU | Use Export Script |
46
+ | AOT-GAN | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 193.915 ms | 3 - 187 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
47
+ | AOT-GAN | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 195.48 ms | 1 - 47 MB | FP16 | NPU | Use Export Script |
48
+ | AOT-GAN | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 118.959 ms | 3 - 86 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
49
+ | AOT-GAN | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 118.56 ms | 3 - 65 MB | FP16 | NPU | Use Export Script |
50
+ | AOT-GAN | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 96.258 ms | 4 - 4 MB | FP16 | NPU | Use Export Script |
51
 
52
 
53
 
 
 
 
 
 
 
54
 
55
  ## Installation
56
 
 
105
  ```bash
106
  python -m qai_hub_models.models.aotgan.export
107
  ```
 
108
  ```
109
+ Profiling Results
110
+ ------------------------------------------------------------
111
+ AOT-GAN
112
+ Device : Samsung Galaxy S23 (13)
113
+ Runtime : TFLITE
114
+ Estimated inference time (ms) : 153.0
115
+ Estimated peak memory usage (MB): [4, 7]
116
+ Total # Ops : 235
117
+ Compute Unit(s) : NPU (235 ops)
118
  ```
119
 
120
 
 
213
  Get more details on AOT-GAN's performance across various devices [here](https://aihub.qualcomm.com/models/aotgan).
214
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
215
 
216
+
217
  ## License
218
+ * The license for the original implementation of AOT-GAN can be found [here](https://github.com/taki0112/AttnGAN-Tensorflow/blob/master/LICENSE).
219
+ * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
220
+
221
+
222
 
223
  ## References
224
  * [Aggregated Contextual Transformations for High-Resolution Image Inpainting](https://arxiv.org/abs/2104.01431)
225
  * [Source Model Implementation](https://github.com/researchmm/AOT-GAN-for-Inpainting)
226
 
227
+
228
+
229
  ## Community
230
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
231
  * For questions or feedback please [reach out to us](mailto:[email protected]).