Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -14,7 +14,7 @@ tags:
|
|
14 |
|
15 |
AOT-GAN is a machine learning model that allows to erase and in-paint part of given input image.
|
16 |
|
17 |
-
This model is an implementation of AOT-GAN found [here](
|
18 |
This repository provides scripts to run AOT-GAN on Qualcomm® devices.
|
19 |
More details on model performance across various devices, can be found
|
20 |
[here](https://aihub.qualcomm.com/models/aotgan).
|
@@ -29,15 +29,28 @@ More details on model performance across various devices, can be found
|
|
29 |
- Number of parameters: 15.2M
|
30 |
- Model size: 58.0 MB
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
|
34 |
|
35 |
-
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
36 |
-
| ---|---|---|---|---|---|---|---|
|
37 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 153.234 ms | 3 - 5 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite)
|
38 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 153.843 ms | 4 - 22 MB | FP16 | NPU | [AOT-GAN.so](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.so)
|
39 |
-
|
40 |
-
|
41 |
|
42 |
## Installation
|
43 |
|
@@ -92,16 +105,16 @@ device. This script does the following:
|
|
92 |
```bash
|
93 |
python -m qai_hub_models.models.aotgan.export
|
94 |
```
|
95 |
-
|
96 |
```
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
105 |
```
|
106 |
|
107 |
|
@@ -200,15 +213,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
200 |
Get more details on AOT-GAN's performance across various devices [here](https://aihub.qualcomm.com/models/aotgan).
|
201 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
202 |
|
|
|
203 |
## License
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
207 |
|
208 |
## References
|
209 |
* [Aggregated Contextual Transformations for High-Resolution Image Inpainting](https://arxiv.org/abs/2104.01431)
|
210 |
* [Source Model Implementation](https://github.com/researchmm/AOT-GAN-for-Inpainting)
|
211 |
|
|
|
|
|
212 |
## Community
|
213 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
214 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
|
|
14 |
|
15 |
AOT-GAN is a machine learning model that allows to erase and in-paint part of given input image.
|
16 |
|
17 |
+
This model is an implementation of AOT-GAN found [here]({source_repo}).
|
18 |
This repository provides scripts to run AOT-GAN on Qualcomm® devices.
|
19 |
More details on model performance across various devices, can be found
|
20 |
[here](https://aihub.qualcomm.com/models/aotgan).
|
|
|
29 |
- Number of parameters: 15.2M
|
30 |
- Model size: 58.0 MB
|
31 |
|
32 |
+
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
33 |
+
|---|---|---|---|---|---|---|---|---|
|
34 |
+
| AOT-GAN | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 152.996 ms | 4 - 7 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
|
35 |
+
| AOT-GAN | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 153.279 ms | 4 - 24 MB | FP16 | NPU | [AOT-GAN.so](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.so) |
|
36 |
+
| AOT-GAN | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 120.324 ms | 3 - 215 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
|
37 |
+
| AOT-GAN | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 139.029 ms | 4 - 61 MB | FP16 | NPU | [AOT-GAN.so](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.so) |
|
38 |
+
| AOT-GAN | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 152.722 ms | 3 - 6 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
|
39 |
+
| AOT-GAN | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 92.37 ms | 4 - 5 MB | FP16 | NPU | Use Export Script |
|
40 |
+
| AOT-GAN | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 153.035 ms | 3 - 6 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
|
41 |
+
| AOT-GAN | SA8255 (Proxy) | SA8255P Proxy | QNN | 92.574 ms | 4 - 6 MB | FP16 | NPU | Use Export Script |
|
42 |
+
| AOT-GAN | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 152.757 ms | 3 - 5 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
|
43 |
+
| AOT-GAN | SA8775 (Proxy) | SA8775P Proxy | QNN | 93.61 ms | 4 - 6 MB | FP16 | NPU | Use Export Script |
|
44 |
+
| AOT-GAN | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 152.642 ms | 3 - 5 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
|
45 |
+
| AOT-GAN | SA8650 (Proxy) | SA8650P Proxy | QNN | 92.421 ms | 4 - 5 MB | FP16 | NPU | Use Export Script |
|
46 |
+
| AOT-GAN | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 193.915 ms | 3 - 187 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
|
47 |
+
| AOT-GAN | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 195.48 ms | 1 - 47 MB | FP16 | NPU | Use Export Script |
|
48 |
+
| AOT-GAN | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 118.959 ms | 3 - 86 MB | FP16 | NPU | [AOT-GAN.tflite](https://huggingface.co/qualcomm/AOT-GAN/blob/main/AOT-GAN.tflite) |
|
49 |
+
| AOT-GAN | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 118.56 ms | 3 - 65 MB | FP16 | NPU | Use Export Script |
|
50 |
+
| AOT-GAN | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 96.258 ms | 4 - 4 MB | FP16 | NPU | Use Export Script |
|
51 |
|
52 |
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
## Installation
|
56 |
|
|
|
105 |
```bash
|
106 |
python -m qai_hub_models.models.aotgan.export
|
107 |
```
|
|
|
108 |
```
|
109 |
+
Profiling Results
|
110 |
+
------------------------------------------------------------
|
111 |
+
AOT-GAN
|
112 |
+
Device : Samsung Galaxy S23 (13)
|
113 |
+
Runtime : TFLITE
|
114 |
+
Estimated inference time (ms) : 153.0
|
115 |
+
Estimated peak memory usage (MB): [4, 7]
|
116 |
+
Total # Ops : 235
|
117 |
+
Compute Unit(s) : NPU (235 ops)
|
118 |
```
|
119 |
|
120 |
|
|
|
213 |
Get more details on AOT-GAN's performance across various devices [here](https://aihub.qualcomm.com/models/aotgan).
|
214 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
215 |
|
216 |
+
|
217 |
## License
|
218 |
+
* The license for the original implementation of AOT-GAN can be found [here](https://github.com/taki0112/AttnGAN-Tensorflow/blob/master/LICENSE).
|
219 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
220 |
+
|
221 |
+
|
222 |
|
223 |
## References
|
224 |
* [Aggregated Contextual Transformations for High-Resolution Image Inpainting](https://arxiv.org/abs/2104.01431)
|
225 |
* [Source Model Implementation](https://github.com/researchmm/AOT-GAN-for-Inpainting)
|
226 |
|
227 |
+
|
228 |
+
|
229 |
## Community
|
230 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
231 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|