Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,201 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
|
|
17 |
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
31 |
|
32 |
-
-
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
|
|
|
|
39 |
|
40 |
-
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
45 |
|
46 |
-
|
|
|
|
|
47 |
|
48 |
-
|
49 |
|
50 |
-
|
51 |
|
52 |
-
|
53 |
|
54 |
-
|
55 |
|
56 |
-
|
57 |
|
58 |
-
|
59 |
|
60 |
-
|
|
|
|
|
61 |
|
62 |
-
|
63 |
|
64 |
-
|
|
|
|
|
65 |
|
66 |
-
|
67 |
|
68 |
-
|
69 |
|
70 |
-
|
71 |
|
72 |
-
|
73 |
|
74 |
-
[
|
|
|
|
|
75 |
|
76 |
-
|
77 |
|
78 |
-
|
79 |
|
80 |
-
|
|
|
|
|
81 |
|
82 |
-
|
83 |
|
84 |
-
|
|
|
|
|
85 |
|
86 |
-
|
87 |
|
88 |
-
|
|
|
|
|
89 |
|
90 |
-
|
91 |
|
|
|
92 |
|
93 |
-
|
94 |
|
95 |
-
|
|
|
|
|
96 |
|
97 |
-
|
98 |
|
99 |
-
|
|
|
|
|
100 |
|
101 |
-
|
102 |
|
103 |
-
|
104 |
|
105 |
-
|
|
|
|
|
106 |
|
107 |
-
|
108 |
|
109 |
-
|
|
|
|
|
110 |
|
111 |
-
|
112 |
|
113 |
-
[
|
|
|
|
|
114 |
|
115 |
-
|
116 |
|
117 |
-
|
|
|
|
|
118 |
|
119 |
-
|
120 |
|
121 |
-
|
122 |
|
123 |
-
|
|
|
|
|
124 |
|
125 |
-
|
126 |
|
127 |
-
|
128 |
|
129 |
-
[
|
|
|
|
|
130 |
|
131 |
-
|
132 |
|
|
|
133 |
|
|
|
134 |
|
135 |
-
|
136 |
|
137 |
-
|
|
|
|
|
138 |
|
139 |
-
|
140 |
|
141 |
-
|
|
|
|
|
142 |
|
143 |
-
|
144 |
|
145 |
-
|
|
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- qingy2024/PR2-SFT
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model:
|
8 |
+
- Qwen/Qwen2.5-14B-Instruct
|
9 |
---
|
10 |
|
11 |
+
## PR2 14B Instruct
|
12 |
|
13 |
+
PR2 is an experimental fine tune of Qwen2.5 14B Instruct, incorporating planning and reasoning before outputting a final answer. It is trained for 2 epochs on the verified subset of qingy2024/PR2-SFT.
|
14 |
|
15 |
+
**Example:**
|
16 |
|
17 |
+
Input: Find the minimum value of the expression \\(\left(\sqrt{2(1+\cos 2 x)}-\sqrt{36-4 \sqrt{5}} \sin x+2\right) \cdot \left(3+2 \sqrt{10-\sqrt{5}} \cos y-\cos 2 y\right)\\). If the answer is not an integer, round it to the nearest integer.
|
18 |
|
19 |
+
Output:
|
20 |
|
21 |
+
```
|
22 |
+
<plan>
|
23 |
+
1. Simplify the expression by breaking it down into manageable parts.
|
24 |
+
2. Use trigonometric identities to simplify terms involving trigonometric functions.
|
25 |
+
3. Analyze the structure of the expression to identify potential optimization strategies.
|
26 |
+
4. Consider the possibility of minimizing each part of the expression separately.
|
27 |
+
5. Calculate the minimum value of the entire expression and round it to the nearest integer if necessary.
|
28 |
+
</plan>
|
29 |
|
30 |
+
<think>
|
31 |
+
Hmm... let me start by simplifying the expression. The expression is:
|
32 |
|
33 |
+
\[
|
34 |
+
\left(\sqrt{2(1+\cos 2x)} - \sqrt{36-4\sqrt{5}} \sin x + 2\right) \cdot \left(3 + 2\sqrt{10-\sqrt{5}} \cos y - \cos 2y\right)
|
35 |
+
\]
|
36 |
|
37 |
+
First, I notice that \(\sqrt{2(1+\cos 2x)}\) can be simplified using a trigonometric identity. Recall that \(1 + \cos 2x = 2\cos^2 x\), so:
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
\[
|
40 |
+
\sqrt{2(1+\cos 2x)} = \sqrt{2 \cdot 2\cos^2 x} = \sqrt{4\cos^2 x} = 2|\cos x|
|
41 |
+
\]
|
42 |
|
43 |
+
Since \(\cos x\) can be positive or negative, we'll keep it as \(2|\cos x|\) for now.
|
44 |
|
45 |
+
Next, let's look at the second part of the first factor: \(-\sqrt{36-4\sqrt{5}} \sin x + 2\). This seems a bit complicated, but perhaps we can find a way to simplify or bound it.
|
|
|
|
|
46 |
|
47 |
+
Now, let's consider the second factor: \(3 + 2\sqrt{10-\sqrt{5}} \cos y - \cos 2y\). Again, we can use trigonometric identities to simplify \(\cos 2y\). Recall that \(\cos 2y = 2\cos^2 y - 1\), so:
|
48 |
|
49 |
+
\[
|
50 |
+
3 + 2\sqrt{10-\sqrt{5}} \cos y - \cos 2y = 3 + 2\sqrt{10-\sqrt{5}} \cos y - (2\cos^2 y - 1) = 4 + 2\sqrt{10-\sqrt{5}} \cos y - 2\cos^2 y
|
51 |
+
\]
|
52 |
|
53 |
+
This is a quadratic in terms of \(\cos y\), so we might be able to find its minimum value.
|
54 |
|
55 |
+
Wait, perhaps it's better to think about minimizing each factor separately and then multiply the minima together. Let's try that.
|
56 |
|
57 |
+
First, let's find the minimum of the first factor:
|
58 |
|
59 |
+
\[
|
60 |
+
F_1(x) = 2|\cos x| - \sqrt{36-4\sqrt{5}} \sin x + 2
|
61 |
+
\]
|
62 |
|
63 |
+
This seems complicated due to the absolute value and the trigonometric functions. Maybe we can express it in terms of a single trigonometric function.
|
64 |
|
65 |
+
Alternatively, perhaps we can use calculus to find the minimum of \(F_1(x)\). Let's try that.
|
66 |
|
67 |
+
Let's consider \(F_1(x) = 2|\cos x| - \sqrt{36-4\sqrt{5}} \sin x + 2\). To find the minimum, we can take the derivative and set it to zero.
|
68 |
|
69 |
+
However, the absolute value makes this tricky. Perhaps we can consider the cases where \(\cos x\) is positive and negative separately.
|
70 |
|
71 |
+
Case 1: \(\cos x \geq 0\)
|
72 |
|
73 |
+
Then \(F_1(x) = 2\cos x - \sqrt{36-4\sqrt{5}} \sin x + 2\). Taking the derivative with respect to \(x\):
|
74 |
|
75 |
+
\[
|
76 |
+
F_1'(x) = -2\sin x - \sqrt{36-4\sqrt{5}} \cos x
|
77 |
+
\]
|
78 |
|
79 |
+
Setting \(F_1'(x) = 0\):
|
80 |
|
81 |
+
\[
|
82 |
+
-2\sin x - \sqrt{36-4\sqrt{5}} \cos x = 0 \implies -2\sin x = \sqrt{36-4\sqrt{5}} \cos x \implies \tan x = -\frac{\sqrt{36-4\sqrt{5}}}{2}
|
83 |
+
\]
|
84 |
|
85 |
+
This gives us a critical point, but we need to check if it's a minimum.
|
86 |
|
87 |
+
Alternatively, perhaps we can use trigonometric identities to express \(F_1(x)\) as a single trigonometric function.
|
88 |
|
89 |
+
Recall that \(A\sin x + B\cos x = R\sin(x + \alpha)\), where \(R = \sqrt{A^2 + B^2}\) and \(\tan \alpha = \frac{B}{A}\).
|
90 |
|
91 |
+
In our case, \(A = -\sqrt{36-4\sqrt{5}}\) and \(B = 2\), so:
|
92 |
|
93 |
+
\[
|
94 |
+
R = \sqrt{(-\sqrt{36-4\sqrt{5}})^2 + 2^2} = \sqrt{36-4\sqrt{5} + 4} = \sqrt{40-4\sqrt{5}} = 2\sqrt{10-\sqrt{5}}
|
95 |
+
\]
|
96 |
|
97 |
+
So, \(F_1(x) = 2\sqrt{10-\sqrt{5}} \sin(x + \alpha) + 2\).
|
98 |
|
99 |
+
The minimum value of \(\sin(x + \alpha)\) is \(-1\), so the minimum of \(F_1(x)\) is:
|
100 |
|
101 |
+
\[
|
102 |
+
2\sqrt{10-\sqrt{5}} \cdot (-1) + 2 = -2\sqrt{10-\sqrt{5}} + 2
|
103 |
+
\]
|
104 |
|
105 |
+
Now, let's find the minimum of the second factor:
|
106 |
|
107 |
+
\[
|
108 |
+
F_2(y) = 4 + 2\sqrt{10-\sqrt{5}} \cos y - 2\cos^2 y
|
109 |
+
\]
|
110 |
|
111 |
+
This is a quadratic in \(\cos y\). Let \(z = \cos y\), then:
|
112 |
|
113 |
+
\[
|
114 |
+
F_2(y) = -2z^2 + 2\sqrt{10-\sqrt{5}} z + 4
|
115 |
+
\]
|
116 |
|
117 |
+
This is a quadratic equation in \(z\), and since the coefficient of \(z^2\) is negative, it has a maximum value. However, we need the minimum value of \(F_2(y)\). The minimum will occur at the boundaries of \(z\), i.e., when \(z = 1\) or \(z = -1\).
|
118 |
|
119 |
+
Let's evaluate \(F_2(y)\) at \(z = 1\) and \(z = -1\).
|
120 |
|
121 |
+
At \(z = 1\):
|
122 |
|
123 |
+
\[
|
124 |
+
F_2(y) = -2(1)^2 + 2\sqrt{10-\sqrt{5}} (1) + 4 = -2 + 2\sqrt{10-\sqrt{5}} + 4 = 2 + 2\sqrt{10-\sqrt{5}}
|
125 |
+
\]
|
126 |
|
127 |
+
At \(z = -1\):
|
128 |
|
129 |
+
\[
|
130 |
+
F_2(y) = -2(-1)^2 + 2\sqrt{10-\sqrt{5}} (-1) + 4 = -2 - 2\sqrt{10-\sqrt{5}} + 4 = 2 - 2\sqrt{10-\sqrt{5}}
|
131 |
+
\]
|
132 |
|
133 |
+
Since \(\sqrt{10-\sqrt{5}} > 0\), the minimum value of \(F_2(y)\) is \(2 - 2\sqrt{10-\sqrt{5}}\).
|
134 |
|
135 |
+
Now, the minimum value of the entire expression is the product of the minima of \(F_1(x)\) and \(F_2(y)\):
|
136 |
|
137 |
+
\[
|
138 |
+
(-2\sqrt{10-\sqrt{5}} + 2) \cdot (2 - 2\sqrt{10-\sqrt{5}}) = (-2\sqrt{10-\sqrt{5}} + 2)(2 - 2\sqrt{10-\sqrt{5}})
|
139 |
+
\]
|
140 |
|
141 |
+
Let's compute this product:
|
142 |
|
143 |
+
\[
|
144 |
+
(-2\sqrt{10-\sqrt{5}} + 2)(2 - 2\sqrt{10-\sqrt{5}}) = (-2\sqrt{10-\sqrt{5}} \cdot 2) + (-2\sqrt{10-\sqrt{5}} \cdot -2\sqrt{10-\sqrt{5}}) + (2 \cdot 2) + (2 \cdot -2\sqrt{10-\sqrt{5}})
|
145 |
+
\]
|
146 |
|
147 |
+
Simplifying each term:
|
148 |
|
149 |
+
\[
|
150 |
+
= -4\sqrt{10-\sqrt{5}} + 4(10-\sqrt{5}) + 4 - 4\sqrt{10-\sqrt{5}}
|
151 |
+
\]
|
152 |
|
153 |
+
Combine like terms:
|
154 |
|
155 |
+
\[
|
156 |
+
= -4\sqrt{10-\sqrt{5}} - 4\sqrt{10-\sqrt{5}} + 4(10-\sqrt{5}) + 4 = -8\sqrt{10-\sqrt{5}} + 40 - 4\sqrt{5} + 4 = -8\sqrt{10-\sqrt{5}} + 44 - 4\sqrt{5}
|
157 |
+
\]
|
158 |
|
159 |
+
This expression is quite complicated, and calculating its exact value might not be straightforward. However, we can approximate the value.
|
160 |
|
161 |
+
First, let's approximate \(\sqrt{10 - \sqrt{5}}\). Since \(\sqrt{5} \approx 2.236\), we have:
|
162 |
|
163 |
+
\[
|
164 |
+
\sqrt{10 - 2.236} = \sqrt{7.764} \approx 2.786
|
165 |
+
\]
|
166 |
|
167 |
+
Similarly, \(\sqrt{5} \approx 2.236\).
|
168 |
|
169 |
+
Now, let's approximate the expression:
|
170 |
|
171 |
+
\[
|
172 |
+
-8 \cdot 2.786 + 44 - 4 \cdot 2.236 = -22.288 + 44 - 8.944 = 12.768
|
173 |
+
\]
|
174 |
|
175 |
+
Rounding this to the nearest integer gives us 13.
|
176 |
|
177 |
+
Wait, let's double-check the calculations to ensure accuracy.
|
178 |
|
179 |
+
First, let's compute \(\sqrt{10 - \sqrt{5}}\) more precisely.
|
180 |
|
181 |
+
\(\sqrt{5} \approx 2.2360679775\), so:
|
182 |
|
183 |
+
\[
|
184 |
+
\sqrt{10 - 2.2360679775} = \sqrt{7.7639320225} \approx 2.786
|
185 |
+
\]
|
186 |
|
187 |
+
Now, compute the expression:
|
188 |
|
189 |
+
\[
|
190 |
+
-8 \cdot 2.786 + 44 - 4 \cdot 2.236 = -22.288 + 44 - 8.944 = 12.768
|
191 |
+
\]
|
192 |
|
193 |
+
Rounding 12.768 to the nearest integer gives us 13.
|
194 |
|
195 |
+
Thus, the minimum value of the expression is approximately 13.
|
196 |
+
</think>
|
197 |
|
198 |
+
<answer>
|
199 |
+
\boxed{13}
|
200 |
+
</answer>
|
201 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|