qingy2024 commited on
Commit
1f8cbc3
·
verified ·
1 Parent(s): e0841a9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +129 -127
README.md CHANGED
@@ -1,199 +1,201 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
 
 
 
 
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
75
 
76
- ## Training Details
77
 
78
- ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
 
81
 
82
- [More Information Needed]
83
 
84
- ### Training Procedure
 
 
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
 
 
89
 
90
- [More Information Needed]
91
 
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
 
100
 
101
- [More Information Needed]
102
 
103
- ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
 
 
106
 
107
- ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
 
 
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
 
 
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
 
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
 
124
 
125
- [More Information Needed]
126
 
127
- ### Results
128
 
129
- [More Information Needed]
 
 
130
 
131
- #### Summary
132
 
 
133
 
 
134
 
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
 
 
138
 
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
 
 
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - qingy2024/PR2-SFT
5
+ language:
6
+ - en
7
+ base_model:
8
+ - Qwen/Qwen2.5-14B-Instruct
9
  ---
10
 
11
+ ## PR2 14B Instruct
12
 
13
+ PR2 is an experimental fine tune of Qwen2.5 14B Instruct, incorporating planning and reasoning before outputting a final answer. It is trained for 2 epochs on the verified subset of qingy2024/PR2-SFT.
14
 
15
+ **Example:**
16
 
17
+ Input: Find the minimum value of the expression \\(\left(\sqrt{2(1+\cos 2 x)}-\sqrt{36-4 \sqrt{5}} \sin x+2\right) \cdot \left(3+2 \sqrt{10-\sqrt{5}} \cos y-\cos 2 y\right)\\). If the answer is not an integer, round it to the nearest integer.
18
 
19
+ Output:
20
 
21
+ ```
22
+ <plan>
23
+ 1. Simplify the expression by breaking it down into manageable parts.
24
+ 2. Use trigonometric identities to simplify terms involving trigonometric functions.
25
+ 3. Analyze the structure of the expression to identify potential optimization strategies.
26
+ 4. Consider the possibility of minimizing each part of the expression separately.
27
+ 5. Calculate the minimum value of the entire expression and round it to the nearest integer if necessary.
28
+ </plan>
29
 
30
+ <think>
31
+ Hmm... let me start by simplifying the expression. The expression is:
32
 
33
+ \[
34
+ \left(\sqrt{2(1+\cos 2x)} - \sqrt{36-4\sqrt{5}} \sin x + 2\right) \cdot \left(3 + 2\sqrt{10-\sqrt{5}} \cos y - \cos 2y\right)
35
+ \]
36
 
37
+ First, I notice that \(\sqrt{2(1+\cos 2x)}\) can be simplified using a trigonometric identity. Recall that \(1 + \cos 2x = 2\cos^2 x\), so:
 
 
 
 
 
 
38
 
39
+ \[
40
+ \sqrt{2(1+\cos 2x)} = \sqrt{2 \cdot 2\cos^2 x} = \sqrt{4\cos^2 x} = 2|\cos x|
41
+ \]
42
 
43
+ Since \(\cos x\) can be positive or negative, we'll keep it as \(2|\cos x|\) for now.
44
 
45
+ Next, let's look at the second part of the first factor: \(-\sqrt{36-4\sqrt{5}} \sin x + 2\). This seems a bit complicated, but perhaps we can find a way to simplify or bound it.
 
 
46
 
47
+ Now, let's consider the second factor: \(3 + 2\sqrt{10-\sqrt{5}} \cos y - \cos 2y\). Again, we can use trigonometric identities to simplify \(\cos 2y\). Recall that \(\cos 2y = 2\cos^2 y - 1\), so:
48
 
49
+ \[
50
+ 3 + 2\sqrt{10-\sqrt{5}} \cos y - \cos 2y = 3 + 2\sqrt{10-\sqrt{5}} \cos y - (2\cos^2 y - 1) = 4 + 2\sqrt{10-\sqrt{5}} \cos y - 2\cos^2 y
51
+ \]
52
 
53
+ This is a quadratic in terms of \(\cos y\), so we might be able to find its minimum value.
54
 
55
+ Wait, perhaps it's better to think about minimizing each factor separately and then multiply the minima together. Let's try that.
56
 
57
+ First, let's find the minimum of the first factor:
58
 
59
+ \[
60
+ F_1(x) = 2|\cos x| - \sqrt{36-4\sqrt{5}} \sin x + 2
61
+ \]
62
 
63
+ This seems complicated due to the absolute value and the trigonometric functions. Maybe we can express it in terms of a single trigonometric function.
64
 
65
+ Alternatively, perhaps we can use calculus to find the minimum of \(F_1(x)\). Let's try that.
66
 
67
+ Let's consider \(F_1(x) = 2|\cos x| - \sqrt{36-4\sqrt{5}} \sin x + 2\). To find the minimum, we can take the derivative and set it to zero.
68
 
69
+ However, the absolute value makes this tricky. Perhaps we can consider the cases where \(\cos x\) is positive and negative separately.
70
 
71
+ Case 1: \(\cos x \geq 0\)
72
 
73
+ Then \(F_1(x) = 2\cos x - \sqrt{36-4\sqrt{5}} \sin x + 2\). Taking the derivative with respect to \(x\):
74
 
75
+ \[
76
+ F_1'(x) = -2\sin x - \sqrt{36-4\sqrt{5}} \cos x
77
+ \]
78
 
79
+ Setting \(F_1'(x) = 0\):
80
 
81
+ \[
82
+ -2\sin x - \sqrt{36-4\sqrt{5}} \cos x = 0 \implies -2\sin x = \sqrt{36-4\sqrt{5}} \cos x \implies \tan x = -\frac{\sqrt{36-4\sqrt{5}}}{2}
83
+ \]
84
 
85
+ This gives us a critical point, but we need to check if it's a minimum.
86
 
87
+ Alternatively, perhaps we can use trigonometric identities to express \(F_1(x)\) as a single trigonometric function.
88
 
89
+ Recall that \(A\sin x + B\cos x = R\sin(x + \alpha)\), where \(R = \sqrt{A^2 + B^2}\) and \(\tan \alpha = \frac{B}{A}\).
90
 
91
+ In our case, \(A = -\sqrt{36-4\sqrt{5}}\) and \(B = 2\), so:
92
 
93
+ \[
94
+ R = \sqrt{(-\sqrt{36-4\sqrt{5}})^2 + 2^2} = \sqrt{36-4\sqrt{5} + 4} = \sqrt{40-4\sqrt{5}} = 2\sqrt{10-\sqrt{5}}
95
+ \]
96
 
97
+ So, \(F_1(x) = 2\sqrt{10-\sqrt{5}} \sin(x + \alpha) + 2\).
98
 
99
+ The minimum value of \(\sin(x + \alpha)\) is \(-1\), so the minimum of \(F_1(x)\) is:
100
 
101
+ \[
102
+ 2\sqrt{10-\sqrt{5}} \cdot (-1) + 2 = -2\sqrt{10-\sqrt{5}} + 2
103
+ \]
104
 
105
+ Now, let's find the minimum of the second factor:
106
 
107
+ \[
108
+ F_2(y) = 4 + 2\sqrt{10-\sqrt{5}} \cos y - 2\cos^2 y
109
+ \]
110
 
111
+ This is a quadratic in \(\cos y\). Let \(z = \cos y\), then:
112
 
113
+ \[
114
+ F_2(y) = -2z^2 + 2\sqrt{10-\sqrt{5}} z + 4
115
+ \]
116
 
117
+ This is a quadratic equation in \(z\), and since the coefficient of \(z^2\) is negative, it has a maximum value. However, we need the minimum value of \(F_2(y)\). The minimum will occur at the boundaries of \(z\), i.e., when \(z = 1\) or \(z = -1\).
118
 
119
+ Let's evaluate \(F_2(y)\) at \(z = 1\) and \(z = -1\).
120
 
121
+ At \(z = 1\):
122
 
123
+ \[
124
+ F_2(y) = -2(1)^2 + 2\sqrt{10-\sqrt{5}} (1) + 4 = -2 + 2\sqrt{10-\sqrt{5}} + 4 = 2 + 2\sqrt{10-\sqrt{5}}
125
+ \]
126
 
127
+ At \(z = -1\):
128
 
129
+ \[
130
+ F_2(y) = -2(-1)^2 + 2\sqrt{10-\sqrt{5}} (-1) + 4 = -2 - 2\sqrt{10-\sqrt{5}} + 4 = 2 - 2\sqrt{10-\sqrt{5}}
131
+ \]
132
 
133
+ Since \(\sqrt{10-\sqrt{5}} > 0\), the minimum value of \(F_2(y)\) is \(2 - 2\sqrt{10-\sqrt{5}}\).
134
 
135
+ Now, the minimum value of the entire expression is the product of the minima of \(F_1(x)\) and \(F_2(y)\):
136
 
137
+ \[
138
+ (-2\sqrt{10-\sqrt{5}} + 2) \cdot (2 - 2\sqrt{10-\sqrt{5}}) = (-2\sqrt{10-\sqrt{5}} + 2)(2 - 2\sqrt{10-\sqrt{5}})
139
+ \]
140
 
141
+ Let's compute this product:
142
 
143
+ \[
144
+ (-2\sqrt{10-\sqrt{5}} + 2)(2 - 2\sqrt{10-\sqrt{5}}) = (-2\sqrt{10-\sqrt{5}} \cdot 2) + (-2\sqrt{10-\sqrt{5}} \cdot -2\sqrt{10-\sqrt{5}}) + (2 \cdot 2) + (2 \cdot -2\sqrt{10-\sqrt{5}})
145
+ \]
146
 
147
+ Simplifying each term:
148
 
149
+ \[
150
+ = -4\sqrt{10-\sqrt{5}} + 4(10-\sqrt{5}) + 4 - 4\sqrt{10-\sqrt{5}}
151
+ \]
152
 
153
+ Combine like terms:
154
 
155
+ \[
156
+ = -4\sqrt{10-\sqrt{5}} - 4\sqrt{10-\sqrt{5}} + 4(10-\sqrt{5}) + 4 = -8\sqrt{10-\sqrt{5}} + 40 - 4\sqrt{5} + 4 = -8\sqrt{10-\sqrt{5}} + 44 - 4\sqrt{5}
157
+ \]
158
 
159
+ This expression is quite complicated, and calculating its exact value might not be straightforward. However, we can approximate the value.
160
 
161
+ First, let's approximate \(\sqrt{10 - \sqrt{5}}\). Since \(\sqrt{5} \approx 2.236\), we have:
162
 
163
+ \[
164
+ \sqrt{10 - 2.236} = \sqrt{7.764} \approx 2.786
165
+ \]
166
 
167
+ Similarly, \(\sqrt{5} \approx 2.236\).
168
 
169
+ Now, let's approximate the expression:
170
 
171
+ \[
172
+ -8 \cdot 2.786 + 44 - 4 \cdot 2.236 = -22.288 + 44 - 8.944 = 12.768
173
+ \]
174
 
175
+ Rounding this to the nearest integer gives us 13.
176
 
177
+ Wait, let's double-check the calculations to ensure accuracy.
178
 
179
+ First, let's compute \(\sqrt{10 - \sqrt{5}}\) more precisely.
180
 
181
+ \(\sqrt{5} \approx 2.2360679775\), so:
182
 
183
+ \[
184
+ \sqrt{10 - 2.2360679775} = \sqrt{7.7639320225} \approx 2.786
185
+ \]
186
 
187
+ Now, compute the expression:
188
 
189
+ \[
190
+ -8 \cdot 2.786 + 44 - 4 \cdot 2.236 = -22.288 + 44 - 8.944 = 12.768
191
+ \]
192
 
193
+ Rounding 12.768 to the nearest integer gives us 13.
194
 
195
+ Thus, the minimum value of the expression is approximately 13.
196
+ </think>
197
 
198
+ <answer>
199
+ \boxed{13}
200
+ </answer>
201
+ ```