File size: 18,993 Bytes
b07ba17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
"__module__": "sb3_contrib.tqc.policies",
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
"__init__": "<function TQCPolicy.__init__ at 0x7f81201e6670>",
"_build": "<function TQCPolicy._build at 0x7f81201e6700>",
"_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7f81201e6790>",
"reset_noise": "<function TQCPolicy.reset_noise at 0x7f81201e6820>",
"make_actor": "<function TQCPolicy.make_actor at 0x7f81201e68b0>",
"make_critic": "<function TQCPolicy.make_critic at 0x7f81201e6940>",
"forward": "<function TQCPolicy.forward at 0x7f81201e69d0>",
"_predict": "<function TQCPolicy._predict at 0x7f81201e6a60>",
"set_training_mode": "<function TQCPolicy.set_training_mode at 0x7f81201e6af0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7f81201e4d00>"
},
"verbose": 1,
"policy_kwargs": {
"use_sde": false
},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVFQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLC4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWWAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSwuFlIwBQ5R0lFKUjARoaWdolGgSKJZYAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLC4WUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYLAAAAAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwuFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWCwAAAAAAAAAAAAAAAAAAAAAAAJRoIUsLhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
"dtype": "float64",
"_shape": [
11
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False False False False]",
"bounded_above": "[False False False False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVGAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLYwUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
"dtype": "float32",
"_shape": [
3
],
"low": "[-1. -1. -1.]",
"high": "[1. 1. 1.]",
"bounded_below": "[ True True True]",
"bounded_above": "[ True True True]",
"_np_random": "RandomState(MT19937)"
},
"n_envs": 1,
"num_timesteps": 1000000,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": 0,
"action_noise": null,
"start_time": 1675945411279550992,
"learning_rate": 0.0003,
"tensorboard_log": "runs/Hopper-v3__tqc__2185068769__1675945406/Hopper-v3",
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": null,
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
},
"_last_original_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVzQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZYAAAAAAAAAO7YNpY1Tfc/nsqym6zLrz9OiMvz9ia7v/IwO+aQruK/bd4P8Q8T678IH/LDz+EDQOt0g9mC9Pw/OsJCveMA7j8C7E/eEOgGQMZZ9qCcAgPAv42/0YwA/D+UjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLC4aUjAFDlHSUUpQu"
},
"_episode_num": 2045,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": 0.0,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImiUBaoq2hkCUhpRSlIwBbJRL6IwBdJRHQNwqT0Cih391fZQoaAZoCWgPQwjD1mzldTysQJSGlFKUaBVN6ANoFkdA3DIyr1/UfHV9lChoBmgJaA9DCAk2rn/XKIZAlIaUUpRoFUvdaBZHQNwz8xVAAyV1fZQoaAZoCWgPQwj7sUl+ZGeQQJSGlFKUaBVNHwFoFkdA3DY2raufVnV9lChoBmgJaA9DCDQO9bs4G6xAlIaUUpRoFU3oA2gWR0DcPiHps41hdX2UKGgGaAloD0MIJVmHoysykUCUhpRSlGgVTTEBaBZHQNxAkhAjY7J1fZQoaAZoCWgPQwjZz2IpIj+QQJSGlFKUaBVNJgFoFkdA3ELmnZTQ3XV9lChoBmgJaA9DCG4T7pXZ2pBAlIaUUpRoFU0tAWgWR0DcRUYHKOktdX2UKGgGaAloD0MIHOviNlq2k0CUhpRSlGgVTV4BaBZHQNxH/MVpKz11fZQoaAZoCWgPQwjerMH7KuhjQJSGlFKUaBVLSWgWR0DcSJb6KtPpdX2UKGgGaAloD0MI65Cb4UYFrECUhpRSlGgVTegDaBZHQNxQYmf9P1t1fZQoaAZoCWgPQwgcQwBw1AusQJSGlFKUaBVN6ANoFkdA3FgyOi35OHV9lChoBmgJaA9DCHqNXaL6JKxAlIaUUpRoFU3oA2gWR0DcYDvhDPWydX2UKGgGaAloD0MIKVsk7W5QrECUhpRSlGgVTegDaBZHQNxm+ZJ04ip1fZQoaAZoCWgPQwgew2M/gwmsQJSGlFKUaBVN6ANoFkdA3G1t15B1LnV9lChoBmgJaA9DCC9uowHcSaxAlIaUUpRoFU3oA2gWR0Dcd/pxhlUZdX2UKGgGaAloD0MIeJs3ToLiqECUhpRSlGgVTegDaBZHQNx/5wf6oEV1fZQoaAZoCWgPQwig+Zy7nYd5QJSGlFKUaBVNNAFoFkdA3IJPpblijXV9lChoBmgJaA9DCH3NctlIc4ZAlIaUUpRoFUvdaBZHQNyEHyUTtb91fZQoaAZoCWgPQwgS2QdZdjyKQJSGlFKUaBVL6WgWR0DchfnIBBAwdX2UKGgGaAloD0MIeLXcmQnuPkCUhpRSlGgVSxtoFkdA3IY0mTC+DnV9lChoBmgJaA9DCM/AyMuaSDZAlIaUUpRoFUsVaBZHQNyGXdnscAB1fZQoaAZoCWgPQwiR0QFJmO2rQJSGlFKUaBVN6ANoFkdA3I5Ii8nNPnV9lChoBmgJaA9DCFaDMLf7HqxAlIaUUpRoFU3oA2gWR0Dclkc3rD64dX2UKGgGaAloD0MIEsE4uPzVq0CUhpRSlGgVTegDaBZHQNyeTGH58Bx1fZQoaAZoCWgPQwibyw2GssurQJSGlFKUaBVN6ANoFkdA3KYOAaef7XV9lChoBmgJaA9DCIyEtpwDmatAlIaUUpRoFU3oA2gWR0DcrWqKl54XdX2UKGgGaAloD0MIICbhQn6Tq0CUhpRSlGgVTegDaBZHQNy1d4uwost1fZQoaAZoCWgPQwhiE5m5iPirQJSGlFKUaBVN6ANoFkdA3L2D74zrNXV9lChoBmgJaA9DCDKuuDga3atAlIaUUpRoFU3oA2gWR0DcxWBsxfv4dX2UKGgGaAloD0MI+x9grdodXECUhpRSlGgVSzpoFkdA3MXSbQ1JlXV9lChoBmgJaA9DCM3NN6Jz/qtAlIaUUpRoFU3oA2gWR0DczbqNAC4jdX2UKGgGaAloD0MI/FHUmSPdq0CUhpRSlGgVTeUDaBZHQNzVilqWTot1fZQoaAZoCWgPQwi2MAvttAqsQJSGlFKUaBVN6ANoFkdA3N2Hx5cC5nV9lChoBmgJaA9DCGJodXLmspBAlIaUUpRoFU1EAWgWR0Dc4CHfFaStdX2UKGgGaAloD0MIDHkEN7r4q0CUhpRSlGgVTegDaBZHQNznlIMvysl1fZQoaAZoCWgPQwjz5JoC4QOsQJSGlFKUaBVN6ANoFkdA3O4rIxgy/XV9lChoBmgJaA9DCFX2XRH8J6xAlIaUUpRoFU3oA2gWR0Dc9X/JLdvbdX2UKGgGaAloD0MIIchBCQskrECUhpRSlGgVTegDaBZHQNz9E9p22Xt1fZQoaAZoCWgPQwjZBu5AJTysQJSGlFKUaBVN6ANoFkdA3QT83Dej23V9lChoBmgJaA9DCBFxcyo5JKxAlIaUUpRoFU3oA2gWR0DdDOk/JNj9dX2UKGgGaAloD0MIQIS4clYNrECUhpRSlGgVTegDaBZHQN0U5nTZxrB1fZQoaAZoCWgPQwjqPCr+h3OsQJSGlFKUaBVN6ANoFkdA3RzEXiiqQ3V9lChoBmgJaA9DCGb5ugwn26tAlIaUUpRoFU3oA2gWR0DdJLl1gYxddX2UKGgGaAloD0MIZMqHoColrECUhpRSlGgVTegDaBZHQN0snOBg/kh1fZQoaAZoCWgPQwgCEHf1wvyrQJSGlFKUaBVN6ANoFkdA3TgYvxYq5XV9lChoBmgJaA9DCBnFckvTIqxAlIaUUpRoFU3oA2gWR0DdP8CldkaudX2UKGgGaAloD0MIj26EReUurECUhpRSlGgVTegDaBZHQN1HqwqI7/51fZQoaAZoCWgPQwj7WwLwz+SrQJSGlFKUaBVN6ANoFkdA3U+RsbNr03V9lChoBmgJaA9DCPw1WaNeCKxAlIaUUpRoFU3oA2gWR0DdV38n8baRdX2UKGgGaAloD0MIDLH6I+zpq0CUhpRSlGgVTegDaBZHQN1feVW4mTl1fZQoaAZoCWgPQwjsvfiivT9kQJSGlFKUaBVLSmgWR0DdYAeVY6n0dX2UKGgGaAloD0MIY+/FFw0mrECUhpRSlGgVTegDaBZHQN1nBn7UG3Z1fZQoaAZoCWgPQwgqcLINRPurQJSGlFKUaBVN6ANoFkdA3W5DuCPIXHV9lChoBmgJaA9DCAbVBifKG6xAlIaUUpRoFU3oA2gWR0DddkrCk43ndX2UKGgGaAloD0MIjspN1OoErECUhpRSlGgVTegDaBZHQN1+OW07bL51fZQoaAZoCWgPQwiI9rGCZ/+rQJSGlFKUaBVN6ANoFkdA3YXSmEXcg3V9lChoBmgJaA9DCLN8XYZ/CqxAlIaUUpRoFU3oA2gWR0DdjWWv+wTudX2UKGgGaAloD0MImtL6WwoorECUhpRSlGgVTegDaBZHQN2VVOuFHrh1fZQoaAZoCWgPQwjPZtXnYiGsQJSGlFKUaBVN6ANoFkdA3Z1FVJtix3V9lChoBmgJaA9DCHAmpgsBDaxAlIaUUpRoFU3oA2gWR0DdpS41AJLNdX2UKGgGaAloD0MIBRiWP+eyq0CUhpRSlGgVTc4DaBZHQN2s7v+S8rZ1fZQoaAZoCWgPQwhcOXtn9GyHQJSGlFKUaBVL8GgWR0DdrtX71qWUdX2UKGgGaAloD0MInS6LidUbrECUhpRSlGgVTegDaBZHQN22tpwwTM91fZQoaAZoCWgPQwiaXfdWVCOsQJSGlFKUaBVN6ANoFkdA3b6Z/zJ6p3V9lChoBmgJaA9DCNxkVBn2L6xAlIaUUpRoFU3oA2gWR0DdxoykvboKdX2UKGgGaAloD0MICMpt+zZSrECUhpRSlGgVTegDaBZHQN3OaI593KV1fZQoaAZoCWgPQwgLf4Y3Y0usQJSGlFKUaBVN6ANoFkdA3dZae1a4c3V9lChoBmgJaA9DCAubAS5IPGRAlIaUUpRoFUtKaBZHQN3W6dIf8uV1fZQoaAZoCWgPQwiYUMHhDSWsQJSGlFKUaBVN6ANoFkdA3d7fTtsvZnV9lChoBmgJaA9DCLUzTG3xY6xAlIaUUpRoFU3oA2gWR0Dd5td/x2B8dX2UKGgGaAloD0MIxlIkX6lErECUhpRSlGgVTegDaBZHQN3uttj5Kvp1fZQoaAZoCWgPQwjHoX4XDv6rQJSGlFKUaBVN6ANoFkdA3fauRx95QnV9lChoBmgJaA9DCPxUFRqYN6JAlIaUUpRoFU2WAmgWR0DeAMUfp2U0dX2UKGgGaAloD0MIptQl41A8rECUhpRSlGgVTegDaBZHQN4HignhKlJ1fZQoaAZoCWgPQwhNLzGWqR2sQJSGlFKUaBVN6ANoFkdA3g9yKwIMSnV9lChoBmgJaA9DCMwHBDoT8qtAlIaUUpRoFU3oA2gWR0DeFz248U22dX2UKGgGaAloD0MI/Wt55SIyrECUhpRSlGgVTegDaBZHQN4ersuzyBl1fZQoaAZoCWgPQwgL73IRr0esQJSGlFKUaBVN6ANoFkdA3iZaY8uBc3V9lChoBmgJaA9DCO9WluhsQqxAlIaUUpRoFU3oA2gWR0DeLSp7Y02tdX2UKGgGaAloD0MIcXZrmeQZrECUhpRSlGgVTegDaBZHQN4z/TFERap1fZQoaAZoCWgPQwgaTpmb3zysQJSGlFKUaBVN6ANoFkdA3jtHAd4mkXV9lChoBmgJaA9DCA6IEFeeVqxAlIaUUpRoFU3oA2gWR0DeQ0inhsIndX2UKGgGaAloD0MITODW3UxhrECUhpRSlGgVTegDaBZHQN5LOw9V3ll1fZQoaAZoCWgPQwgL8Ui8rE+sQJSGlFKUaBVN6ANoFkdA3lM4SfUWmHV9lChoBmgJaA9DCA8r3PIRQKxAlIaUUpRoFU3oA2gWR0DeWw/pqynldX2UKGgGaAloD0MILnJPVy9ZrECUhpRSlGgVTegDaBZHQN5i/k6DGtJ1fZQoaAZoCWgPQwjgaTLj1TesQJSGlFKUaBVN6ANoFkdA3mr25zHS4XV9lChoBmgJaA9DCOLK2TszTaxAlIaUUpRoFU3oA2gWR0Decup6kZaWdX2UKGgGaAloD0MIK/htiAFdrECUhpRSlGgVTegDaBZHQN568reMyad1fZQoaAZoCWgPQwglBRbA5DmsQJSGlFKUaBVN6ANoFkdA3oLd065oXnV9lChoBmgJaA9DCOBkG7hjPo1AlIaUUpRoFU0IAWgWR0DehPTboKUndX2UKGgGaAloD0MIhbTGoHO3n0CUhpRSlGgVTUYCaBZHQN6Jk5sO5J91fZQoaAZoCWgPQwgH6/8cbhesQJSGlFKUaBVN6ANoFkdA3pF7DTjNp3V9lChoBmgJaA9DCNmXbDyI/6dAlIaUUpRoFU1XA2gWR0DemFDqD9OzdX2UKGgGaAloD0MIQWfSpvJxrECUhpRSlGgVTegDaBZHQN6gP4VZcLV1fZQoaAZoCWgPQwgHfentVzusQJSGlFKUaBVN6ANoFkdA3qg6w3YL9nV9lChoBmgJaA9DCFw8vOfIYaxAlIaUUpRoFU3oA2gWR0Der2m29crzdX2UKGgGaAloD0MIF7zoK6BqrECUhpRSlGgVTegDaBZHQN621sYyfth1fZQoaAZoCWgPQwhhGRu6mTOHQJSGlFKUaBVL6GgWR0DeuLTwmVqvdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 990000,
"buffer_size": 1,
"batch_size": 256,
"learning_starts": 10000,
"tau": 0.005,
"gamma": 0.99,
"gradient_steps": 1,
"optimize_memory_usage": false,
"replay_buffer_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
"__module__": "stable_baselines3.common.buffers",
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
"__init__": "<function ReplayBuffer.__init__ at 0x7f812066e5e0>",
"add": "<function ReplayBuffer.add at 0x7f812066e670>",
"sample": "<function ReplayBuffer.sample at 0x7f812066e700>",
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f812066e790>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7f8120b15800>"
},
"replay_buffer_kwargs": {},
"train_freq": {
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
},
"use_sde_at_warmup": false,
"target_entropy": -3.0,
"ent_coef": "auto",
"target_update_interval": 1,
"top_quantiles_to_drop_per_net": 5,
"batch_norm_stats": [],
"batch_norm_stats_target": []
} |