update model card README.md
Browse files
README.md
CHANGED
@@ -18,19 +18,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
# bert-finetuned-gesture-prediction-21-classes
|
19 |
|
20 |
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
|
21 |
-
It achieves the following results on the
|
22 |
-
- Loss: 0.
|
23 |
-
- Accuracy:
|
24 |
-
- Precision: 0.
|
25 |
-
- Recall: 0.
|
26 |
-
- F1: 0.
|
27 |
-
|
28 |
-
It achieves the following results on the test set:
|
29 |
-
- Loss: 0.8763
|
30 |
-
- Accuracy: 0.7896
|
31 |
-
- Precision: 0.7867
|
32 |
-
- Recall: 0.7896
|
33 |
-
- F1: 0.7808
|
34 |
|
35 |
## Model description
|
36 |
|
@@ -42,7 +35,7 @@ More information needed
|
|
42 |
|
43 |
## Training and evaluation data
|
44 |
|
45 |
-
|
46 |
|
47 |
## Training procedure
|
48 |
|
@@ -50,7 +43,6 @@ The model has been trained, validated, and tested with the qfrodicio/gesture-pre
|
|
50 |
|
51 |
The following hyperparameters were used during training:
|
52 |
- learning_rate: 2e-05
|
53 |
-
- weight_decay: 0.01
|
54 |
- train_batch_size: 16
|
55 |
- eval_batch_size: 16
|
56 |
- seed: 42
|
@@ -62,16 +54,16 @@ The following hyperparameters were used during training:
|
|
62 |
|
63 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
64 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
65 |
-
| 2.
|
66 |
-
| 1.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
|
76 |
|
77 |
### Framework versions
|
|
|
18 |
# bert-finetuned-gesture-prediction-21-classes
|
19 |
|
20 |
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.9660
|
23 |
+
- Accuracy: 0.8214
|
24 |
+
- Precision: 0.8184
|
25 |
+
- Recall: 0.8214
|
26 |
+
- F1: 0.8166
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
35 |
|
36 |
## Training and evaluation data
|
37 |
|
38 |
+
More information needed
|
39 |
|
40 |
## Training procedure
|
41 |
|
|
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
- learning_rate: 2e-05
|
|
|
46 |
- train_batch_size: 16
|
47 |
- eval_batch_size: 16
|
48 |
- seed: 42
|
|
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
57 |
+
| 2.225 | 1.0 | 104 | 1.3314 | 0.7115 | 0.6469 | 0.7115 | 0.6675 |
|
58 |
+
| 1.0881 | 2.0 | 208 | 0.9569 | 0.7750 | 0.7577 | 0.7750 | 0.7525 |
|
59 |
+
| 0.7006 | 3.0 | 312 | 0.8805 | 0.7959 | 0.7917 | 0.7959 | 0.7831 |
|
60 |
+
| 0.4943 | 4.0 | 416 | 0.8664 | 0.8123 | 0.8122 | 0.8123 | 0.8048 |
|
61 |
+
| 0.3372 | 5.0 | 520 | 0.8765 | 0.8130 | 0.8102 | 0.8130 | 0.8053 |
|
62 |
+
| 0.2416 | 6.0 | 624 | 0.8772 | 0.8166 | 0.8139 | 0.8166 | 0.8107 |
|
63 |
+
| 0.178 | 7.0 | 728 | 0.9186 | 0.8217 | 0.8186 | 0.8217 | 0.8167 |
|
64 |
+
| 0.1302 | 8.0 | 832 | 0.9186 | 0.8202 | 0.8183 | 0.8202 | 0.8165 |
|
65 |
+
| 0.1063 | 9.0 | 936 | 0.9618 | 0.8245 | 0.8213 | 0.8245 | 0.8198 |
|
66 |
+
| 0.094 | 10.0 | 1040 | 0.9660 | 0.8214 | 0.8184 | 0.8214 | 0.8166 |
|
67 |
|
68 |
|
69 |
### Framework versions
|