metascroy commited on
Commit
62e0577
·
verified ·
1 Parent(s): b7e6a7d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +236 -192
README.md CHANGED
@@ -3,197 +3,241 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  tags: []
4
  ---
5
 
6
+ ---
7
+ library_name: transformers
8
+ tags:
9
+ - torchao
10
+ - qwen
11
+ - qwen3
12
+ - nlp
13
+ - code
14
+ - math
15
+ - chat
16
+ - conversational
17
+ license: mit
18
+ language:
19
+ - multilingual
20
+ base_model:
21
+ - Qwen/Qwen3-4B
22
+ pipeline_tag: text-generation
23
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
 
25
 
26
+ [Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B) is quantized by the PyTorch team using [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) with 8-bit embeddings and 8-bit dynamic activations with 4-bit weight linears (8da4w).
27
+ The model is suitable for mobile deployment with [ExecuTorch](https://github.com/pytorch/executorch).
28
+
29
+ We provide the [quantized pte](TODO: ADD LINK) for direct use in ExecuTorch.
30
+ (The provided pte file is exported with a max_seq_length/max_context_length of 1024; if you wish to change this, re-export the quantized model following the instructions in [Exporting to ExecuTorch](#exporting-to-executorch).)
31
+
32
+ # Running in a mobile app
33
+ The [pte file](TODO: ADD LINK) can be run with ExecuTorch on a mobile phone. See the [instructions](https://pytorch.org/executorch/main/llm/llama-demo-ios.html) for doing this in iOS.
34
+ On iPhone 15 Pro, the model runs at [TODO: ADD] tokens/sec and uses [TODO: ADD] Mb of memory.
35
+
36
+ [TODO: ADD SCREENSHOT]
37
+
38
+ # Quantization Recipe
39
+
40
+ First need to install the required packages:
41
+ ```Shell
42
+ pip install git+https://github.com/huggingface/transformers@main
43
+ pip install torchao
44
+ ```
45
+
46
+ ## Untie Embedding Weights
47
+ We want to quantize the embedding and lm_head differently. Since those layers are tied, we first need to untie the model:
48
+
49
+ ```Py
50
+ from transformers import (
51
+ AutoModelForCausalLM,
52
+ AutoProcessor,
53
+ AutoTokenizer,
54
+ )
55
+ import torch
56
+
57
+ model_id = "Qwen/Qwen3-4B"
58
+ untied_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", device_map="auto")
59
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
60
+
61
+ print(untied_model)
62
+ from transformers.modeling_utils import find_tied_parameters
63
+ print("tied weights:", find_tied_parameters(untied_model))
64
+ if getattr(untied_model.config.get_text_config(decoder=True), "tie_word_embeddings"):
65
+ setattr(untied_model.config.get_text_config(decoder=True), "tie_word_embeddings", False)
66
+
67
+ untied_model._tied_weights_keys = []
68
+ untied_model.lm_head.weight = torch.nn.Parameter(untied_model.lm_head.weight.clone())
69
+
70
+ print("tied weights:", find_tied_parameters(untied_model))
71
+
72
+ USER_ID = "YOUR_USER_ID"
73
+ MODEL_NAME = model_id.split("/")[-1]
74
+ save_to = f"{USER_ID}/{MODEL_NAME}-untied-weights"
75
+
76
+ untied_model.push_to_hub(save_to)
77
+ tokenizer.push_to_hub(save_to)
78
+
79
+ # or save locally
80
+ save_to_local_path = f"{MODEL_NAME}-untied-weights"
81
+ untied_model.save_pretrained(save_to_local_path)
82
+ tokenizer.save_pretrained(save_to)
83
+ ```
84
+
85
+ Note: to `push_to_hub` you need to run
86
+ ```Shell
87
+ pip install -U "huggingface_hub[cli]"
88
+ huggingface-cli login
89
+ ```
90
+ and use a token with write access, from https://huggingface.co/settings/tokens
91
+
92
+ ## Quantization
93
+
94
+ We used following code to get the quantized model:
95
+
96
+ ```Py
97
+ from transformers import (
98
+ AutoModelForCausalLM,
99
+ AutoProcessor,
100
+ AutoTokenizer,
101
+ TorchAoConfig,
102
+ )
103
+ from torchao.quantization.quant_api import (
104
+ IntxWeightOnlyConfig,
105
+ Int8DynamicActivationIntxWeightConfig,
106
+ AOPerModuleConfig,
107
+ quantize_,
108
+ )
109
+ from torchao.quantization.granularity import PerGroup, PerAxis
110
+ import torch
111
+
112
+ # we start from the model with untied weights
113
+ model_id = "Qwen/Qwen3-4B"
114
+ USER_ID = "YOUR_USER_ID"
115
+ MODEL_NAME = model_id.split("/")[-1]
116
+ untied_model_id = f"{USER_ID}/{MODEL_NAME}-untied-weights"
117
+ untied_model_local_path = f"{MODEL_NAME}-untied-weights"
118
+
119
+ embedding_config = IntxWeightOnlyConfig(
120
+ weight_dtype=torch.int8,
121
+ granularity=PerAxis(0),
122
+ )
123
+ linear_config = Int8DynamicActivationIntxWeightConfig(
124
+ weight_dtype=torch.int4,
125
+ weight_granularity=PerGroup(32),
126
+ weight_scale_dtype=torch.bfloat16,
127
+ )
128
+ quant_config = AOPerModuleConfig({"_default": linear_config, "model.embed_tokens": embedding_config})
129
+ quantization_config = TorchAoConfig(quant_type=quant_config, include_embedding=True, untie_embedding_weights=True, modules_to_not_convert=[])
130
+
131
+ # either use `untied_model_id` or `untied_model_local_path`
132
+ quantized_model = AutoModelForCausalLM.from_pretrained(untied_model_id, torch_dtype=torch.float32, device_map="auto", quantization_config=quantization_config)
133
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
134
+
135
+ # Push to hub
136
+ MODEL_NAME = model_id.split("/")[-1]
137
+ save_to = f"{USER_ID}/{MODEL_NAME}-untied-8da4w"
138
+ quantized_model.push_to_hub(save_to, safe_serialization=False)
139
+ tokenizer.push_to_hub(save_to)
140
+
141
+ # Manual testing
142
+ prompt = "Hey, are you conscious? Can you talk to me?"
143
+ messages = [
144
+ {
145
+ "role": "system",
146
+ "content": "",
147
+ },
148
+ {"role": "user", "content": prompt},
149
+ ]
150
+ templated_prompt = tokenizer.apply_chat_template(
151
+ messages,
152
+ tokenize=False,
153
+ add_generation_prompt=True,
154
+ )
155
+ print("Prompt:", prompt)
156
+ print("Templated prompt:", templated_prompt)
157
+ inputs = tokenizer(
158
+ templated_prompt,
159
+ return_tensors="pt",
160
+ ).to("cuda")
161
+ generated_ids = quantized_model.generate(**inputs, max_new_tokens=128)
162
+ output_text = tokenizer.batch_decode(
163
+ generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
164
+ )
165
+ print("Response:", output_text[0][len(prompt):])
166
+ ```
167
+
168
+ The response from the manual testing is:
169
+
170
+ ```
171
+ TODO: ADD RESPONSE
172
+ ```
173
+
174
+ # Model Quality
175
+
176
+ We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model.
177
+
178
+ Need to install lm-eval from source: https://github.com/EleutherAI/lm-evaluation-harness#install
179
+
180
+ ## baseline
181
+ ```Shell
182
+ lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks hellaswag --device cuda:0 --batch_size auto
183
+ ```
184
+
185
+ ## int8 dynamic activation and int4 weight quantization (8da4w)
186
+ ```Shell
187
+ lm_eval --model hf --model_args pretrained=pytorch/Phi-4-mini-instruct-8da4w --tasks hellaswag --device cuda:0 --batch_size auto
188
+ ```
189
+
190
+ | Benchmark | | |
191
+ |----------------------------------|----------------|---------------------------|
192
+ | | Qwen3-4B | Qwen3-4B-8da4w |
193
+ | **Popular aggregated benchmark** | | |
194
+ | mmlu | | |
195
+ | mmlu_pro | | |
196
+ | bbh
197
+ | **Reasoning** | | |
198
+ | gpqa_main_zeroshot | | |
199
+ | mgsm_en_cot_en
200
+ | **Multilingual** | | |
201
+ | m_mmlu | | |
202
+ | **Math** | | |
203
+ | gsm8k | | |
204
+ | leaderboard_math_hard | | |
205
+ | **Overall** | | |
206
+
207
+
208
+ # Exporting to ExecuTorch
209
+
210
+ We can run the quantized model on a mobile phone using [ExecuTorch](https://github.com/pytorch/executorch).
211
+ Once ExecuTorch is [set-up](https://pytorch.org/executorch/main/getting-started.html), exporting and running the model on device is a breeze.
212
+
213
+ We first convert the [quantized checkpoint](TODO: ADD LINK) to one ExecuTorch's LLM export script expects by renaming some of the checkpoint keys.
214
+ The following script does this for you. We have uploaded the converted checkpoint [pytorch_model_converted.bin](TODO: ADD LINK) for convenience.
215
+ ```Shell
216
+ python -m executorch.examples.models.qwen3.convert_weights pytorch_model.bin pytorch_model_converted.bin
217
+ ```
218
+
219
+ Once the checkpoint is converted, we can export to ExecuTorch's pte format with the XNNPACK delegate.
220
+ The below command exports with a max_seq_length/max_context_length of 1024, but it can be changed as desired.
221
+
222
+ ```Shell
223
+ PARAMS="executorch/examples/models/qwen3/4b_config.json"
224
+ python -m executorch.examples.models.llama.export_llama \
225
+ --model "qwen3-4b" \
226
+ --checkpoint "pytorch_model_converted.bin" \
227
+ --params "$PARAMS" \
228
+ -kv \
229
+ --use_sdpa_with_kv_cache \
230
+ -d fp32
231
+ -X \
232
+ --metadata '{"get_bos_id":199999, "get_eos_ids":[200020,199999]}' \
233
+ --max_seq_length 1024 \
234
+ --max_context_length 1024 \
235
+ --output_name="qwen3-4B-8da4w-1024-cxt.pte"
236
+ ```
237
+
238
+ After that you can run the model in a mobile app (see [Running in a mobile app](#running-in-a-mobile-app)).
239
+
240
+ # Disclaimer
241
+ PyTorch has not performed safety evaluations or red teamed the quantized models. Performance characteristics, outputs, and behaviors may differ from the original models. Users are solely responsible for selecting appropriate use cases, evaluating and mitigating for accuracy, safety, and fairness, ensuring security, and complying with all applicable laws and regulations.
242
+
243
+ Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the licenses the models are released under, including any limitations of liability or disclaimers of warranties provided therein.