Text Generation
Transformers
PyTorch
xglm
cstorm125 commited on
Commit
28a0041
·
1 Parent(s): 31e4df4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -31
README.md CHANGED
@@ -128,45 +128,17 @@ See [pythainlp/wangchanglm](https://www.github.com/pythainlp/wangchanglm).
128
 
129
  - **Training regime:** LoRA with 4 GPUs. See more details at [pythainlp/wangchanglm](https://www.github.com/pythainlp/wangchanglm).
130
 
131
-
132
  ## Evaluation
133
 
134
  <!-- This section describes the evaluation protocols and provides the results. -->
135
 
136
  We performed automatic evaluation in the style of [Vicuna](https://vicuna.lmsys.org/) and human evaluation. See more details from our [blog]().
137
 
138
- #### Summary
139
-
140
-
141
  ## Environmental Impact
142
 
143
  <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
 
171
  ## Citation
172
 
@@ -174,10 +146,11 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
 
178
 
179
  ## Model Card Contact
180
 
181
- [More Information Needed]
182
 
183
 
 
128
 
129
  - **Training regime:** LoRA with 4 GPUs. See more details at [pythainlp/wangchanglm](https://www.github.com/pythainlp/wangchanglm).
130
 
 
131
  ## Evaluation
132
 
133
  <!-- This section describes the evaluation protocols and provides the results. -->
134
 
135
  We performed automatic evaluation in the style of [Vicuna](https://vicuna.lmsys.org/) and human evaluation. See more details from our [blog]().
136
 
 
 
 
137
  ## Environmental Impact
138
 
139
  <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
140
 
141
+ Experiments were conducted using a private infrastructure, which has a carbon efficiency of 0.432 kgCO2eq/kWh. A cumulative of 500 hours of computation was performed on hardware of type Tesla V100-SXM2-32GB (TDP of 300W). Total emissions are estimated to be 64.8 CO2eq of which 0 percents were directly offset. Estimations were conducted using the [MachineLearning Impact calculator](https://mlco2.github.io/impact#compute) presented in [lacoste2019quantifying](https://arxiv.org/abs/1910.09700).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
 
143
  ## Citation
144
 
 
146
 
147
  **BibTeX:**
148
 
149
+ ```
150
+ ```
151
 
152
  ## Model Card Contact
153
 
154
+ [PyThaiNLP](https://github.com/pythainlp)
155
 
156