Commit
·
b3c710b
1
Parent(s):
ce71f45
Update README.md
Browse files
README.md
CHANGED
|
@@ -32,6 +32,105 @@ Download: [HuggingFace Hub](https://huggingface.co/datasets/pythainlp/thainer-co
|
|
| 32 |
|
| 33 |
Read more: [Thai NER v2.0](https://pythainlp.github.io/Thai-NER/version/2)
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
## Cite
|
| 36 |
|
| 37 |
> Wannaphong Phatthiyaphaibun. (2022). Thai NER 2.0 (2.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7761354
|
|
|
|
| 32 |
|
| 33 |
Read more: [Thai NER v2.0](https://pythainlp.github.io/Thai-NER/version/2)
|
| 34 |
|
| 35 |
+
## Inference
|
| 36 |
+
|
| 37 |
+
Huggingface doesn't support inference token classification for Thai and It will give wrong tag. You must using this code.
|
| 38 |
+
|
| 39 |
+
```python
|
| 40 |
+
from transformers import AutoTokenizer
|
| 41 |
+
from transformers import AutoModelForTokenClassification
|
| 42 |
+
import torch
|
| 43 |
+
|
| 44 |
+
name="pythainlp/thainer-corpus-v2-base-model"
|
| 45 |
+
tokenizer = AutoTokenizer.from_pretrained(name)
|
| 46 |
+
model = AutoModelForTokenClassification.from_pretrained(name)
|
| 47 |
+
|
| 48 |
+
sentence="ฉันชื่อ นางสาวมะลิวา บุญสระดี อาศัยอยู่ที่อำเภอนางรอง จังหวัดบุรีรัมย์ อายุ 23 ปี เพิ่งเรียนจบจาก มหาวิทยาลัยขอนแก่น และนี่คือข้อมูลปลอมชื่อคนไม่มีอยู่จริง อายุ 23 ปี"
|
| 49 |
+
inputs=tokenizer(cut,is_split_into_words=True,return_tensors="pt")
|
| 50 |
+
|
| 51 |
+
ids = inputs["input_ids"]
|
| 52 |
+
mask = inputs["attention_mask"]
|
| 53 |
+
# forward pass
|
| 54 |
+
outputs = model(ids, attention_mask=mask)
|
| 55 |
+
logits = outputs[0]
|
| 56 |
+
|
| 57 |
+
predictions = torch.argmax(logits, dim=2)
|
| 58 |
+
predicted_token_class = [model.config.id2label[t.item()] for t in predictions[0]]
|
| 59 |
+
|
| 60 |
+
def fix_span_error(words,ner):
|
| 61 |
+
_ner = []
|
| 62 |
+
_ner=ner
|
| 63 |
+
_new_tag=[]
|
| 64 |
+
for i,j in zip(words,_ner):
|
| 65 |
+
#print(i,j)
|
| 66 |
+
i=tokenizer.decode(i)
|
| 67 |
+
if i.isspace() and j.startswith("B-"):
|
| 68 |
+
j="O"
|
| 69 |
+
if i=='' or i=='<s>' or i=='</s>':
|
| 70 |
+
continue
|
| 71 |
+
if i=="<_>":
|
| 72 |
+
i=" "
|
| 73 |
+
_new_tag.append((i,j))
|
| 74 |
+
return _new_tag
|
| 75 |
+
|
| 76 |
+
ner_tag=fix_span_error(inputs['input_ids'][0],predicted_token_class)
|
| 77 |
+
print(ner_tag)
|
| 78 |
+
```
|
| 79 |
+
output:
|
| 80 |
+
```python
|
| 81 |
+
[('ฉัน', 'O'),
|
| 82 |
+
('ชื่อ', 'O'),
|
| 83 |
+
(' ', 'O'),
|
| 84 |
+
('นางสาว', 'B-PERSON'),
|
| 85 |
+
('มะลิ', 'I-PERSON'),
|
| 86 |
+
('วา', 'I-PERSON'),
|
| 87 |
+
(' ', 'I-PERSON'),
|
| 88 |
+
('บุญ', 'I-PERSON'),
|
| 89 |
+
('สระ', 'I-PERSON'),
|
| 90 |
+
('ดี', 'I-PERSON'),
|
| 91 |
+
(' ', 'O'),
|
| 92 |
+
('อาศัย', 'O'),
|
| 93 |
+
('อยู่', 'O'),
|
| 94 |
+
('ที่', 'O'),
|
| 95 |
+
('อําเภอ', 'B-LOCATION'),
|
| 96 |
+
('นาง', 'I-LOCATION'),
|
| 97 |
+
('รอง', 'I-LOCATION'),
|
| 98 |
+
(' ', 'O'),
|
| 99 |
+
('จังหวัด', 'B-LOCATION'),
|
| 100 |
+
('บุรีรัมย์', 'I-LOCATION'),
|
| 101 |
+
(' ', 'O'),
|
| 102 |
+
('อายุ', 'O'),
|
| 103 |
+
(' ', 'O'),
|
| 104 |
+
('23', 'B-AGO'),
|
| 105 |
+
(' ', 'I-AGO'),
|
| 106 |
+
('ปี', 'I-AGO'),
|
| 107 |
+
(' ', 'O'),
|
| 108 |
+
('เพิ่ง', 'O'),
|
| 109 |
+
('เรียนจบ', 'O'),
|
| 110 |
+
('จาก', 'O'),
|
| 111 |
+
(' ', 'O'),
|
| 112 |
+
('มหาวิทยาลั', 'B-ORGANIZATION'),
|
| 113 |
+
('ยขอนแก่น', 'I-ORGANIZATION'),
|
| 114 |
+
(' ', 'O'),
|
| 115 |
+
('และ', 'O'),
|
| 116 |
+
('นี่', 'O'),
|
| 117 |
+
('คือ', 'O'),
|
| 118 |
+
('ข้อมูล', 'O'),
|
| 119 |
+
('ปลอม', 'O'),
|
| 120 |
+
('ชื่อ', 'O'),
|
| 121 |
+
('คน', 'O'),
|
| 122 |
+
('ไม่', 'O'),
|
| 123 |
+
('มี', 'O'),
|
| 124 |
+
('อยู่', 'O'),
|
| 125 |
+
('จริง', 'O'),
|
| 126 |
+
(' ', 'O'),
|
| 127 |
+
('อายุ', 'O'),
|
| 128 |
+
(' ', 'O'),
|
| 129 |
+
('23', 'B-AGO'),
|
| 130 |
+
(' ', 'O'),
|
| 131 |
+
('ปี', 'I-AGO')]
|
| 132 |
+
```
|
| 133 |
+
|
| 134 |
## Cite
|
| 135 |
|
| 136 |
> Wannaphong Phatthiyaphaibun. (2022). Thai NER 2.0 (2.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7761354
|