Commit
·
b643a7e
1
Parent(s):
7515f35
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Irony detection in English
|
2 |
+
## robertuito-irony
|
3 |
+
|
4 |
+
Repository: [https://github.com/pysentimiento/pysentimiento/](https://github.com/finiteautomata/pysentimiento/)
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
Model trained with IRosVA 2019 dataset for irony detection. Base model is [BERTweet], a RoBERTa model trained in English tweets.
|
9 |
+
|
10 |
+
The positive class marks irony, the negative class marks not ironic content.
|
11 |
+
|
12 |
+
## Results
|
13 |
+
|
14 |
+
Results for the four tasks evaluated in `pysentimiento`. Results are expressed as Macro F1 scores
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
| Model | sentiment | emotion | hate_speech | irony |
|
19 |
+
|:-----------|:------------|:------------|:--------------|:------------|
|
20 |
+
| bert | 69.6 +- 0.4 | 42.7 +- 0.6 | 56.0 +- 0.8 | 68.1 +- 2.2 |
|
21 |
+
| electra | 70.9 +- 0.4 | 37.2 +- 2.9 | 55.6 +- 0.6 | 71.3 +- 1.8 |
|
22 |
+
| roberta | 70.4 +- 0.3 | 45.0 +- 0.9 | 55.1 +- 0.4 | 70.4 +- 2.9 |
|
23 |
+
| robertuito | 69.6 +- 0.5 | 43.0 +- 3.3 | 57.5 +- 0.2 | 73.9 +- 1.4 |
|
24 |
+
| bertweet | 72.0 +- 0.4 | 43.1 +- 1.8 | 57.7 +- 0.7 | 80.8 +- 0.7 |
|
25 |
+
|
26 |
+
|
27 |
+
Note that for Hate Speech, these are the results for Semeval 2019, Task 5 Subtask B (HS+TR+AG detection)
|
28 |
+
|
29 |
+
## Citation
|
30 |
+
|
31 |
+
If you use this model in your research, please cite pysentimiento, dataset and pre-trained model papers:
|
32 |
+
|
33 |
+
```
|
34 |
+
@misc{perez2021pysentimiento,
|
35 |
+
title={pysentimiento: A Python Toolkit for Sentiment Analysis and SocialNLP tasks},
|
36 |
+
author={Juan Manuel Pérez and Juan Carlos Giudici and Franco Luque},
|
37 |
+
year={2021},
|
38 |
+
eprint={2106.09462},
|
39 |
+
archivePrefix={arXiv},
|
40 |
+
primaryClass={cs.CL}
|
41 |
+
}
|
42 |
+
@inproceedings{van2018semeval,
|
43 |
+
title={Semeval-2018 task 3: Irony detection in english tweets},
|
44 |
+
author={Van Hee, Cynthia and Lefever, Els and Hoste, V{\'e}ronique},
|
45 |
+
booktitle={Proceedings of The 12th International Workshop on Semantic Evaluation},
|
46 |
+
pages={39--50},
|
47 |
+
year={2018}
|
48 |
+
}
|
49 |
+
|
50 |
+
@inproceedings{nguyen2020bertweet,
|
51 |
+
title={BERTweet: A pre-trained language model for English Tweets},
|
52 |
+
author={Nguyen, Dat Quoc and Vu, Thanh and Nguyen, Anh Tuan},
|
53 |
+
booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations},
|
54 |
+
pages={9--14},
|
55 |
+
year={2020}
|
56 |
+
}
|
57 |
+
```
|