File size: 9,167 Bytes
e74cbb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
library_name: transformers
license: apache-2.0
base_model: microsoft/conditional-detr-resnet-50
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: conditional-detr-resnet-50-uLED-obj-detect-test
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# conditional-detr-resnet-50-uLED-obj-detect-test

This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0912
- Map: 0.9334
- Map 50: 0.9684
- Map 75: 0.9684
- Map Small: -1.0
- Map Medium: 0.9334
- Map Large: -1.0
- Mar 1: 0.0125
- Mar 10: 0.1259
- Mar 100: 0.9777
- Mar Small: -1.0
- Mar Medium: 0.9777
- Mar Large: -1.0
- Map Uled: 0.9334
- Mar 100 Uled: 0.9777
- Map Trash: -1.0
- Mar 100 Trash: -1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Map    | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1  | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Uled | Mar 100 Uled | Map Trash | Mar 100 Trash |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:--------:|:------------:|:---------:|:-------------:|
| No log        | 1.0   | 41   | 0.2460          | 0.7925 | 0.9619 | 0.9382 | -1.0      | 0.7925     | -1.0      | 0.0115 | 0.1133 | 0.8652  | -1.0      | 0.8652     | -1.0      | 0.7925   | 0.8652       | -1.0      | -1.0          |
| No log        | 2.0   | 82   | 0.2123          | 0.8121 | 0.9671 | 0.9527 | -1.0      | 0.8121     | -1.0      | 0.0111 | 0.1125 | 0.8797  | -1.0      | 0.8797     | -1.0      | 0.8121   | 0.8797       | -1.0      | -1.0          |
| No log        | 3.0   | 123  | 0.1597          | 0.8576 | 0.9645 | 0.963  | -1.0      | 0.8576     | -1.0      | 0.0118 | 0.1181 | 0.9217  | -1.0      | 0.9217     | -1.0      | 0.8576   | 0.9217       | -1.0      | -1.0          |
| No log        | 4.0   | 164  | 0.1645          | 0.8532 | 0.9644 | 0.9606 | -1.0      | 0.8532     | -1.0      | 0.0118 | 0.1184 | 0.9174  | -1.0      | 0.9174     | -1.0      | 0.8532   | 0.9174       | -1.0      | -1.0          |
| No log        | 5.0   | 205  | 0.2037          | 0.824  | 0.9632 | 0.9614 | -1.0      | 0.824      | -1.0      | 0.0115 | 0.1142 | 0.8826  | -1.0      | 0.8826     | -1.0      | 0.824    | 0.8826       | -1.0      | -1.0          |
| No log        | 6.0   | 246  | 0.1342          | 0.8864 | 0.9672 | 0.9665 | -1.0      | 0.8864     | -1.0      | 0.0119 | 0.1213 | 0.9429  | -1.0      | 0.9429     | -1.0      | 0.8864   | 0.9429       | -1.0      | -1.0          |
| No log        | 7.0   | 287  | 0.1365          | 0.8821 | 0.9677 | 0.9672 | -1.0      | 0.8821     | -1.0      | 0.0121 | 0.1218 | 0.9362  | -1.0      | 0.9362     | -1.0      | 0.8821   | 0.9362       | -1.0      | -1.0          |
| No log        | 8.0   | 328  | 0.1470          | 0.872  | 0.9666 | 0.9662 | -1.0      | 0.872      | -1.0      | 0.0119 | 0.12   | 0.9326  | -1.0      | 0.9326     | -1.0      | 0.872    | 0.9326       | -1.0      | -1.0          |
| No log        | 9.0   | 369  | 0.1783          | 0.8495 | 0.9678 | 0.9673 | -1.0      | 0.8495     | -1.0      | 0.0118 | 0.118  | 0.9017  | -1.0      | 0.9017     | -1.0      | 0.8495   | 0.9017       | -1.0      | -1.0          |
| No log        | 10.0  | 410  | 0.1563          | 0.8676 | 0.9662 | 0.9643 | -1.0      | 0.8676     | -1.0      | 0.012  | 0.1203 | 0.9225  | -1.0      | 0.9225     | -1.0      | 0.8676   | 0.9225       | -1.0      | -1.0          |
| No log        | 11.0  | 451  | 0.1458          | 0.8783 | 0.966  | 0.9658 | -1.0      | 0.8783     | -1.0      | 0.012  | 0.121  | 0.9321  | -1.0      | 0.9321     | -1.0      | 0.8783   | 0.9321       | -1.0      | -1.0          |
| No log        | 12.0  | 492  | 0.1273          | 0.8939 | 0.9669 | 0.9667 | -1.0      | 0.8939     | -1.0      | 0.0123 | 0.1234 | 0.9462  | -1.0      | 0.9462     | -1.0      | 0.8939   | 0.9462       | -1.0      | -1.0          |
| 0.2348        | 13.0  | 533  | 0.1376          | 0.8862 | 0.9683 | 0.968  | -1.0      | 0.8862     | -1.0      | 0.0121 | 0.1217 | 0.9404  | -1.0      | 0.9404     | -1.0      | 0.8862   | 0.9404       | -1.0      | -1.0          |
| 0.2348        | 14.0  | 574  | 0.1338          | 0.8865 | 0.9669 | 0.9668 | -1.0      | 0.8865     | -1.0      | 0.0122 | 0.1222 | 0.9422  | -1.0      | 0.9422     | -1.0      | 0.8865   | 0.9422       | -1.0      | -1.0          |
| 0.2348        | 15.0  | 615  | 0.1258          | 0.8917 | 0.9685 | 0.9685 | -1.0      | 0.8917     | -1.0      | 0.012  | 0.1221 | 0.9454  | -1.0      | 0.9454     | -1.0      | 0.8917   | 0.9454       | -1.0      | -1.0          |
| 0.2348        | 16.0  | 656  | 0.1206          | 0.8998 | 0.9689 | 0.9689 | -1.0      | 0.8998     | -1.0      | 0.0123 | 0.1233 | 0.9524  | -1.0      | 0.9524     | -1.0      | 0.8998   | 0.9524       | -1.0      | -1.0          |
| 0.2348        | 17.0  | 697  | 0.1075          | 0.911  | 0.969  | 0.969  | -1.0      | 0.911      | -1.0      | 0.0123 | 0.1238 | 0.9612  | -1.0      | 0.9612     | -1.0      | 0.911    | 0.9612       | -1.0      | -1.0          |
| 0.2348        | 18.0  | 738  | 0.1084          | 0.9113 | 0.9692 | 0.9691 | -1.0      | 0.9113     | -1.0      | 0.0123 | 0.1237 | 0.9628  | -1.0      | 0.9628     | -1.0      | 0.9113   | 0.9628       | -1.0      | -1.0          |
| 0.2348        | 19.0  | 779  | 0.1104          | 0.91   | 0.9688 | 0.9688 | -1.0      | 0.91       | -1.0      | 0.0123 | 0.1236 | 0.9602  | -1.0      | 0.9602     | -1.0      | 0.91     | 0.9602       | -1.0      | -1.0          |
| 0.2348        | 20.0  | 820  | 0.1097          | 0.9103 | 0.9693 | 0.9693 | -1.0      | 0.9103     | -1.0      | 0.0123 | 0.1241 | 0.9616  | -1.0      | 0.9616     | -1.0      | 0.9103   | 0.9616       | -1.0      | -1.0          |
| 0.2348        | 21.0  | 861  | 0.1111          | 0.9106 | 0.9666 | 0.9665 | -1.0      | 0.9106     | -1.0      | 0.0123 | 0.1242 | 0.9624  | -1.0      | 0.9624     | -1.0      | 0.9106   | 0.9624       | -1.0      | -1.0          |
| 0.2348        | 22.0  | 902  | 0.1007          | 0.923  | 0.9667 | 0.9666 | -1.0      | 0.923      | -1.0      | 0.0125 | 0.1251 | 0.972   | -1.0      | 0.972      | -1.0      | 0.923    | 0.972        | -1.0      | -1.0          |
| 0.2348        | 23.0  | 943  | 0.1080          | 0.9103 | 0.9671 | 0.9671 | -1.0      | 0.9103     | -1.0      | 0.0123 | 0.1242 | 0.9612  | -1.0      | 0.9612     | -1.0      | 0.9103   | 0.9612       | -1.0      | -1.0          |
| 0.2348        | 24.0  | 984  | 0.0987          | 0.9197 | 0.967  | 0.967  | -1.0      | 0.9197     | -1.0      | 0.0124 | 0.1253 | 0.9697  | -1.0      | 0.9697     | -1.0      | 0.9197   | 0.9697       | -1.0      | -1.0          |
| 0.1648        | 25.0  | 1025 | 0.0979          | 0.9226 | 0.9675 | 0.9675 | -1.0      | 0.9226     | -1.0      | 0.0125 | 0.1253 | 0.9715  | -1.0      | 0.9715     | -1.0      | 0.9226   | 0.9715       | -1.0      | -1.0          |
| 0.1648        | 26.0  | 1066 | 0.0912          | 0.9334 | 0.9684 | 0.9684 | -1.0      | 0.9334     | -1.0      | 0.0125 | 0.1259 | 0.9777  | -1.0      | 0.9777     | -1.0      | 0.9334   | 0.9777       | -1.0      | -1.0          |
| 0.1648        | 27.0  | 1107 | 0.0926          | 0.9311 | 0.9682 | 0.9682 | -1.0      | 0.9311     | -1.0      | 0.0125 | 0.1258 | 0.9763  | -1.0      | 0.9763     | -1.0      | 0.9311   | 0.9763       | -1.0      | -1.0          |
| 0.1648        | 28.0  | 1148 | 0.0933          | 0.9301 | 0.9682 | 0.9681 | -1.0      | 0.9301     | -1.0      | 0.0125 | 0.1258 | 0.9756  | -1.0      | 0.9756     | -1.0      | 0.9301   | 0.9756       | -1.0      | -1.0          |
| 0.1648        | 29.0  | 1189 | 0.0937          | 0.9301 | 0.9682 | 0.9681 | -1.0      | 0.9301     | -1.0      | 0.0125 | 0.1259 | 0.9758  | -1.0      | 0.9758     | -1.0      | 0.9301   | 0.9758       | -1.0      | -1.0          |
| 0.1648        | 30.0  | 1230 | 0.0932          | 0.9311 | 0.9682 | 0.9681 | -1.0      | 0.9311     | -1.0      | 0.0125 | 0.126  | 0.9763  | -1.0      | 0.9763     | -1.0      | 0.9311   | 0.9763       | -1.0      | -1.0          |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0