File size: 2,202 Bytes
b17fcb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: distilbert/distilbert-base-uncased
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-lora-text-classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3129
- Accuracy: {'accuracy': 0.86}

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy            |
|:-------------:|:-----:|:----:|:---------------:|:-------------------:|
| No log        | 1.0   | 250  | 0.4795          | {'accuracy': 0.85}  |
| 0.4131        | 2.0   | 500  | 0.6526          | {'accuracy': 0.851} |
| 0.4131        | 3.0   | 750  | 0.6766          | {'accuracy': 0.854} |
| 0.2017        | 4.0   | 1000 | 0.9597          | {'accuracy': 0.855} |
| 0.2017        | 5.0   | 1250 | 0.9623          | {'accuracy': 0.857} |
| 0.1102        | 6.0   | 1500 | 0.9842          | {'accuracy': 0.866} |
| 0.1102        | 7.0   | 1750 | 1.1943          | {'accuracy': 0.859} |
| 0.023         | 8.0   | 2000 | 1.2874          | {'accuracy': 0.859} |
| 0.023         | 9.0   | 2250 | 1.3154          | {'accuracy': 0.859} |
| 0.0047        | 10.0  | 2500 | 1.3129          | {'accuracy': 0.86}  |


### Framework versions

- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1