Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
inference: false
|
5 |
+
pipeline_tag: token-classification
|
6 |
+
tags:
|
7 |
+
- ner
|
8 |
+
- bert
|
9 |
+
license: mit
|
10 |
+
datasets:
|
11 |
+
- conll2003
|
12 |
+
model-index:
|
13 |
+
- name: dslim/bert-large-NER
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
type: token-classification
|
17 |
+
name: Token Classification
|
18 |
+
dataset:
|
19 |
+
name: conll2003
|
20 |
+
type: conll2003
|
21 |
+
config: conll2003
|
22 |
+
split: test
|
23 |
+
metrics:
|
24 |
+
- name: Accuracy
|
25 |
+
type: accuracy
|
26 |
+
value: 0.9031688753722759
|
27 |
+
verified: true
|
28 |
+
- name: Precision
|
29 |
+
type: precision
|
30 |
+
value: 0.920025068328604
|
31 |
+
verified: true
|
32 |
+
- name: Recall
|
33 |
+
type: recall
|
34 |
+
value: 0.9193688678588825
|
35 |
+
verified: true
|
36 |
+
- name: F1
|
37 |
+
type: f1
|
38 |
+
value: 0.9196968510445761
|
39 |
+
verified: true
|
40 |
+
- name: loss
|
41 |
+
type: loss
|
42 |
+
value: 0.5085050463676453
|
43 |
+
verified: true
|
44 |
+
---
|
45 |
+
|
46 |
+
# ONNX version of dslim/bert-large-NER
|
47 |
+
|
48 |
+
**This model is a conversion of [dslim/bert-large-NER](https://huggingface.co/dslim/bert-large-NER) to ONNX** format using the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library.
|
49 |
+
|
50 |
+
**bert-large-NER** is a fine-tuned BERT model that is ready to use for **Named Entity Recognition** and achieves **state-of-the-art performance** for the NER task. It has been trained to recognize four types of entities: location (LOC), organizations (ORG), person (PER) and Miscellaneous (MISC).
|
51 |
+
|
52 |
+
Specifically, this model is a *bert-large-cased* model that was fine-tuned on the English version of the standard [CoNLL-2003 Named Entity Recognition](https://www.aclweb.org/anthology/W03-0419.pdf) dataset.
|
53 |
+
|
54 |
+
## Usage
|
55 |
+
|
56 |
+
Loading the model requires the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library installed.
|
57 |
+
|
58 |
+
```python
|
59 |
+
from optimum.onnxruntime import ORTModelForTokenClassification
|
60 |
+
from transformers import AutoTokenizer, pipeline
|
61 |
+
|
62 |
+
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained("laiyer/bert-large-NER-onnx")
|
64 |
+
model = ORTModelForTokenClassification.from_pretrained("laiyer/bert-large-NER-onnx")
|
65 |
+
ner = pipeline(
|
66 |
+
task="ner",
|
67 |
+
model=model,
|
68 |
+
tokenizer=tokenizer,
|
69 |
+
)
|
70 |
+
|
71 |
+
ner_output = ner("My name is John Doe.")
|
72 |
+
print(ner_output)
|
73 |
+
```
|