Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- kaist-ai/Perception-Collection
|
5 |
+
- kaist-ai/Perception-Bench
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
metrics:
|
9 |
+
- pearsonr
|
10 |
+
- spearmanr
|
11 |
+
library_name: transformers
|
12 |
+
pipeline_tag: image-to-text
|
13 |
+
tags:
|
14 |
+
- Image-to-Text
|
15 |
+
- Visual Question Answering
|
16 |
+
- Text2Text Generation
|
17 |
+
---
|
18 |
+
## Links for Reference
|
19 |
+
- **Homepage:**
|
20 |
+
- **Repository: https://github.com/kaistAI/prometheus-vision**
|
21 |
+
- **Paper: https://arxiv.org/abs/2401.06591**
|
22 |
+
- **Point of Contact: [email protected]**
|
23 |
+
# TL;DR
|
24 |
+
Prometheus-Vision is the first open-source VLM specialized for evaluation purposes. Prometheus-Vision shows a high correlation with both GPT-4V and human evaluators, indicating its potential to be used as a cheap alternative for GPT-4V evaluation.
|
25 |
+

|
26 |
+
# Model Details
|
27 |
+
|
28 |
+
## Model Description
|
29 |
+
- **Model type:** Vision-Language Model
|
30 |
+
- **Language(s) (NLP):** English
|
31 |
+
- **License:** Apache 2.0
|
32 |
+
- **Related Models:** [All Prometheus Checkpoints](https://huggingface.co/models?search=kaist-ai/Prometheus-Vision)
|
33 |
+
- **Resources for more information:**
|
34 |
+
- [Research paper](https://arxiv.org/abs/2401.06591)
|
35 |
+
- [GitHub Repo](https://github.com/kaistAI/prometheus-vision)
|
36 |
+
|
37 |
+
Prometheu-Vision is trained with two different sizes (7B and 13B).
|
38 |
+
You could check the 13B sized VLM on [this page](https://huggingface.co/kaist-ai/prometheus-vision-13b-v1.0).
|
39 |
+
Also, check out our dataset as well on [this page](https://huggingface.co/datasets/kaist-ai/Perception-Collection).
|
40 |
+
## Prompt Format
|
41 |
+
Prometheus-Vision requires 5 components in the input: An image, an instruction, a response to evaluate, a score rubric, and a reference answer. You could refer to the prompt format below.
|
42 |
+
You should fill in the instruction, response, reference answer, criteria description, and score description for score in range of 1 to 5.
|
43 |
+
```
|
44 |
+
###Task Description:
|
45 |
+
An instruction (might include an Input inside it), a response to evaluate, a reference answer that gets a score of 5, an image and a score rubric representing an evaluation criterion is given.
|
46 |
+
1. Write a detailed feedback that assess the quality of the response strictly based on the given score rubric, not evaluating in general.
|
47 |
+
2. After writing a feedback, write a score that is an integer between 1 and 5. You should refer to the score rubric.
|
48 |
+
3. The output format should look as follows: \"Feedback: (write a feedback for criteria) [RESULT] (an integer number between 1 and 5)\"
|
49 |
+
4. Please do not generate any other opening, closing, and explanations.
|
50 |
+
|
51 |
+
###The instruction to evaluate:
|
52 |
+
{instruction}
|
53 |
+
|
54 |
+
###Response to evaluate:
|
55 |
+
{response}
|
56 |
+
|
57 |
+
###Reference Answer (Score 5):
|
58 |
+
{reference_answer}
|
59 |
+
|
60 |
+
###Score Rubrics:
|
61 |
+
[{criteria_description}]
|
62 |
+
Score 1: {score1_description}
|
63 |
+
Score 2: {score2_description}
|
64 |
+
Score 3: {score3_description}
|
65 |
+
Score 4: {score4_description}
|
66 |
+
Score 5: {score5_description}
|
67 |
+
|
68 |
+
###Feedback:
|
69 |
+
```
|
70 |
+
Also, we use the following output format. During inference, you could parse the score by splitting the number that is generated next to the [RESULT] phrase.
|
71 |
+
```
|
72 |
+
{orig_feedback}
|
73 |
+
[RESULT] {orig_score}
|
74 |
+
```
|
75 |
+
## License
|
76 |
+
Perception Collection and Prometheus-Vision are subject to OpenAI's Terms of Use for the generated data. If you suspect any violations, please reach out to us.
|
77 |
+
# Usage
|
78 |
+
Find below some example scripts on how to use the model in `transformers`:
|
79 |
+
## Using the Pytorch model
|
80 |
+
### Running the model on a GPU
|
81 |
+
<details>
|
82 |
+
<summary> Click to expand </summary>
|
83 |
+
|
84 |
+
```python
|
85 |
+
import argparse
|
86 |
+
import torch
|
87 |
+
import os
|
88 |
+
import json
|
89 |
+
from tqdm import tqdm
|
90 |
+
import shortuuid
|
91 |
+
|
92 |
+
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
93 |
+
from llava.conversation import conv_templates, SeparatorStyle
|
94 |
+
from llava.model.builder import load_pretrained_model
|
95 |
+
from llava.utils import disable_torch_init
|
96 |
+
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
|
97 |
+
|
98 |
+
from PIL import Image
|
99 |
+
import math
|
100 |
+
|
101 |
+
|
102 |
+
def split_list(lst, n):
|
103 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
104 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
105 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
106 |
+
|
107 |
+
|
108 |
+
def get_chunk(lst, n, k):
|
109 |
+
chunks = split_list(lst, n)
|
110 |
+
return chunks[k]
|
111 |
+
|
112 |
+
|
113 |
+
def eval_model(args):
|
114 |
+
# Model
|
115 |
+
disable_torch_init()
|
116 |
+
model_path = 'kaist-ai/prometheus-vision-7b-v1.0'
|
117 |
+
model_name = 'llava-v1.5'
|
118 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
|
119 |
+
|
120 |
+
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
|
121 |
+
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
122 |
+
answers_file = os.path.expanduser(args.answers_file)
|
123 |
+
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
124 |
+
ans_file = open(answers_file, "w")
|
125 |
+
for line in tqdm(questions):
|
126 |
+
idx = line["question_id"]
|
127 |
+
image_file = line["image"]
|
128 |
+
qs = line["text"]
|
129 |
+
cur_prompt = qs
|
130 |
+
if model.config.mm_use_im_start_end:
|
131 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
132 |
+
else:
|
133 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
134 |
+
|
135 |
+
conv = conv_templates[args.conv_mode].copy()
|
136 |
+
conv.append_message(conv.roles[0], qs)
|
137 |
+
conv.append_message(conv.roles[1], None)
|
138 |
+
prompt = conv.get_prompt()
|
139 |
+
|
140 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
141 |
+
|
142 |
+
image = Image.open(os.path.join(args.image_folder, image_file))
|
143 |
+
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
144 |
+
|
145 |
+
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
146 |
+
keywords = [stop_str]
|
147 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
148 |
+
|
149 |
+
with torch.inference_mode():
|
150 |
+
output_ids = model.generate(
|
151 |
+
input_ids,
|
152 |
+
images=image_tensor.unsqueeze(0).half().cuda(),
|
153 |
+
do_sample=True if args.temperature > 0 else False,
|
154 |
+
temperature=args.temperature,
|
155 |
+
top_p=args.top_p,
|
156 |
+
num_beams=args.num_beams,
|
157 |
+
# no_repeat_ngram_size=3,
|
158 |
+
max_new_tokens=1024,
|
159 |
+
use_cache=True)
|
160 |
+
|
161 |
+
input_token_len = input_ids.shape[1]
|
162 |
+
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
|
163 |
+
if n_diff_input_output > 0:
|
164 |
+
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
|
165 |
+
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
|
166 |
+
outputs = outputs.strip()
|
167 |
+
if outputs.endswith(stop_str):
|
168 |
+
outputs = outputs[:-len(stop_str)]
|
169 |
+
outputs = outputs.strip()
|
170 |
+
|
171 |
+
ans_id = shortuuid.uuid()
|
172 |
+
ans_file.write(json.dumps({"question_id": idx,
|
173 |
+
"prompt": cur_prompt,
|
174 |
+
"text": outputs,
|
175 |
+
"answer_id": ans_id,
|
176 |
+
"model_id": model_name,
|
177 |
+
"metadata": {}}) + "\n")
|
178 |
+
ans_file.flush()
|
179 |
+
ans_file.close()
|
180 |
+
|
181 |
+
if __name__ == "__main__":
|
182 |
+
parser = argparse.ArgumentParser()
|
183 |
+
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
184 |
+
parser.add_argument("--model-base", type=str, default=None)
|
185 |
+
parser.add_argument("--image-folder", type=str, default="")
|
186 |
+
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
|
187 |
+
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
188 |
+
parser.add_argument("--conv-mode", type=str, default="llava_v1")
|
189 |
+
parser.add_argument("--num-chunks", type=int, default=1)
|
190 |
+
parser.add_argument("--chunk-idx", type=int, default=0)
|
191 |
+
parser.add_argument("--temperature", type=float, default=0.2)
|
192 |
+
parser.add_argument("--top_p", type=float, default=None)
|
193 |
+
parser.add_argument("--num_beams", type=int, default=1)
|
194 |
+
args = parser.parse_args()
|
195 |
+
|
196 |
+
eval_model(args)
|
197 |
+
|
198 |
+
```
|
199 |
+
</details>
|
200 |
+
|
201 |
+
# Citation
|
202 |
+
|
203 |
+
If you find the following model helpful, please consider citing our paper!
|
204 |
+
|
205 |
+
**BibTeX:**
|
206 |
+
|
207 |
+
```bibtex
|
208 |
+
@misc{lee2024prometheusvision,
|
209 |
+
title={Prometheus-Vision: Vision-Language Model as a Judge for Fine-Grained Evaluation},
|
210 |
+
author={Seongyun Lee and Seungone Kim and Sue Hyun Park and Geewook Kim and Minjoon Seo},
|
211 |
+
year={2024},
|
212 |
+
eprint={2401.06591},
|
213 |
+
archivePrefix={arXiv},
|
214 |
+
primaryClass={cs.CL}
|
215 |
+
}
|
216 |
+
```
|