proleetops commited on
Commit
2904269
·
1 Parent(s): 0b3ce9d

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 761.72 +/- 57.34
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a6a21861a3add600315ac2f80ed5fdb19a5501a68328ac03f22c705ae468339
3
+ size 125194
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb4cfad3c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb4cfad3ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb4cfad3d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb4cfad3dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb4cfad3e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb4cfad3ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb4cfad3f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb4cfa55040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb4cfa550d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb4cfa55160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb4cfa551f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb4cfa55280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fb4cfa560c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
26
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
27
+ "optimizer_kwargs": {
28
+ "alpha": 0.99,
29
+ "eps": 1e-05,
30
+ "weight_decay": 0
31
+ }
32
+ },
33
+ "observation_space": {
34
+ ":type:": "<class 'gym.spaces.box.Box'>",
35
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
36
+ "dtype": "float32",
37
+ "_shape": [
38
+ 28
39
+ ],
40
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
41
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
42
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
43
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
44
+ "_np_random": null
45
+ },
46
+ "action_space": {
47
+ ":type:": "<class 'gym.spaces.box.Box'>",
48
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
49
+ "dtype": "float32",
50
+ "_shape": [
51
+ 8
52
+ ],
53
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
54
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
55
+ "bounded_below": "[ True True True True True True True True]",
56
+ "bounded_above": "[ True True True True True True True True]",
57
+ "_np_random": null
58
+ },
59
+ "n_envs": 4,
60
+ "num_timesteps": 200000,
61
+ "_total_timesteps": 200000,
62
+ "_num_timesteps_at_start": 0,
63
+ "seed": null,
64
+ "action_noise": null,
65
+ "start_time": 1680146533116849765,
66
+ "learning_rate": 0.0007,
67
+ "tensorboard_log": null,
68
+ "lr_schedule": {
69
+ ":type:": "<class 'function'>",
70
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
71
+ },
72
+ "_last_obs": {
73
+ ":type:": "<class 'numpy.ndarray'>",
74
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGfDQjyrFgLArD8mwGYE2r75MAe/LlRyPjGTq74R2BO/nMDbPkIGIL8XP2G+QFLBvMdy273AFkG/aIUzP56G9D4wWly/pksSv4xc7T47doU+5h6sPm2uFr+I/Wg+8R7SPhR8mT4CSdI+bDanPq08dz7dpFE//VEIQAaHfb9CC6o92OQqvgKThT67VEE/zuUBPkYI4j63FKS90S2KP5OlEMBk1BLA8vTnPOThb797cAI+yujmPnki6r6x6sK8ssktPzgajb+fUeS8xLKqvsxNyTwUfJk+AknSPmw2pz6tPHc+kK7bvFPR+L+5TBTAercnvx2Goj1zX/a95NmHvtNJtL4OguE+biY5vT/2Yb7bhDu9+PU7vz1DKT+Kbyc/NuzWvV5zer+BmAA+77q3PgH2FL4WBiW+jkEDPyY3DD4tHAy/FHyZPgJJ0j5sNqc+rTx3Pn6EUL279qu/E9pfvyre4z6iLs29w+oHvKYOnLspyXA/I7ThPnjPSrzcIl++j4aAvN2e67+tpsE+3ASnPC4y7T6NkIG+6FctvoBUGr9ojmk+vS11v1bMfL75CYm+Yk2BvBR8mT4CSdI+bDanPq08dz6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
75
+ },
76
+ "_last_episode_starts": {
77
+ ":type:": "<class 'numpy.ndarray'>",
78
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
79
+ },
80
+ "_last_original_obs": {
81
+ ":type:": "<class 'numpy.ndarray'>",
82
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACLGuW1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmHASPgAAAAB9DPi/AAAAAFmioT0AAAAAY7fqPwAAAABowcq9AAAAALlf5D8AAAAA1rOovQAAAAAJ9/G/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANXGBtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMzY+z0AAAAA9N7qvwAAAABrSCw9AAAAADLl3D8AAAAAdxVLvQAAAABEVfc/AAAAACeXQT0AAAAAnCrdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH47hzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC03Aa+AAAAAM4m778AAAAAonsCPgAAAAD+i9s/AAAAALP/Hj0AAAAAv5XePwAAAABSY/o9AAAAAO1y9r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJKsU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAnc7TvQAAAAB9iOG/AAAAAG1iTT0AAAAAraHaPwAAAAAt7628AAAAAHRt4j8AAAAAfb4HvgAAAABuBvK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
83
+ },
84
+ "_episode_num": 0,
85
+ "use_sde": false,
86
+ "sde_sample_freq": -1,
87
+ "_current_progress_remaining": 0.0,
88
+ "ep_info_buffer": {
89
+ ":type:": "<class 'collections.deque'>",
90
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIDqiNlyzX2MAWyUTegDjAF0lEdAffeQBPsRhHV9lChoBkdAgtuByCFsYWgHTegDaAhHQH4BFqJuVHF1fZQoaAZHQIH3p8WsRxtoB03oA2gIR0B+IBvbXYlIdX2UKGgGR0CDTjqW1MM7aAdN6ANoCEdAfjzo73fygHV9lChoBkdAg39cBEKE4GgHTegDaAhHQH5xVpsXSBt1fZQoaAZHQILv7wDvE0loB03oA2gIR0B+d30lJHy3dX2UKGgGR0CDXA8xKxs3aAdN6ANoCEdAfo6QOFxn4HV9lChoBkdAhPFwQ176YWgHTegDaAhHQH6rJ3C9AX51fZQoaAZHQIQ1aBshxHZoB03oA2gIR0B+9Bl18stkdX2UKGgGR0CECWAxzq8laAdN6ANoCEdAfv1l/H5rQHV9lChoBkdAg6YtTkyULWgHTegDaAhHQH8ZT4tYjjd1fZQoaAZHQIP89IK+i8FoB03oA2gIR0B/NYRFqi48dX2UKGgGR0CEkZYwIt17aAdN6ANoCEdAf2pZf2K2rnV9lChoBkdAhXlbH6uW8mgHTegDaAhHQH9wa6reZXx1fZQoaAZHQITBlzIV/MJoB03oA2gIR0B/h2PuG9HudX2UKGgGR0CGVTxn3+MqaAdN6ANoCEdAf6NpS75EdHV9lChoBkdAh5okUj9n9WgHTegDaAhHQH/tPxtpEhJ1fZQoaAZHQIQRejfvWpZoB03oA2gIR0B/9xe3QUpNdX2UKGgGR0CGMt0lqrR0aAdN6ANoCEdAgAjChFmWdHV9lChoBkdAh9olfZ26kWgHTegDaAhHQIAWpAB1cMV1fZQoaAZHQIUjE5p8F6loB03oA2gIR0CAMLW9US7HdX2UKGgGR0CG3FiqhlDnaAdN6ANoCEdAgDOo0ygwoXV9lChoBkdAhT+x2r4nGGgHTegDaAhHQIA++wkgOjJ1fZQoaAZHQITSwxYaHbhoB03oA2gIR0CATLk078vVdX2UKGgGR0CFHoekpI+XaAdN6ANoCEdAgHIeYlY2bXV9lChoBkdAhnI3Zwn6VWgHTegDaAhHQIB2qLVFx4p1fZQoaAZHQIV2Jradtl9oB03oA2gIR0CAgtoDgZTAdX2UKGgGR0CG4Qa86FM7aAdN6ANoCEdAgJCyDZlFt3V9lChoBkdAfmUYEGJN02gHTegDaAhHQICqMELYwqR1fZQoaAZHQIS5d/8VHnVoB03oA2gIR0CArSL61stTdX2UKGgGR0CCSnfzjFQ3aAdN6ANoCEdAgLgCSJTESHV9lChoBkdAhBBsi0OVgWgHTegDaAhHQIDFmKKpDNR1fZQoaAZHQIdNkQZn+Q5oB03oA2gIR0CA6YjfvWpZdX2UKGgGR0CGcqZSeiBYaAdN6ANoCEdAgO4dTHbRGHV9lChoBkdAhZ6s7U5MlGgHTegDaAhHQID7M9GI9DB1fZQoaAZHQIamQ+8oQWhoB03oA2gIR0CBCPX9zfaYdX2UKGgGR0CGFd6ZYxL1aAdN6ANoCEdAgSJEuQIUrXV9lChoBkdAhbuWbXpW3mgHTegDaAhHQIElPldTo+x1fZQoaAZHQIfvOAAhje9oB03oA2gIR0CBMEFdLQHBdX2UKGgGR0CHIaNFSbYsaAdN6ANoCEdAgT3tdzGPxXV9lChoBkdAiax3EAHVw2gHTegDaAhHQIFhLj5sTFl1fZQoaAZHQIfOQqEvkBFoB03oA2gIR0CBZbduYQardX2UKGgGR0CHLSiFj/dZaAdN6ANoCEdAgXNZoXbdrXV9lChoBkdAhybDdYW+G2gHTegDaAhHQIGBMIRh+fB1fZQoaAZHQIVfAmb9ZRtoB03oA2gIR0CBmsPYnOSodX2UKGgGR0CH02M+eOGTaAdN6ANoCEdAgZ2SVObiInV9lChoBkdAho4qVY6nzmgHTegDaAhHQIGof9tMwlB1fZQoaAZHQIYvwEB8x9JoB03oA2gIR0CBtem3vx6OdX2UKGgGR0CJOYifQKKHaAdN6ANoCEdAgdjCADq4Y3V9lChoBkdAhVKDvd/KAGgHTegDaAhHQIHdMCV8kUt1fZQoaAZHQIUqjyc0+C9oB03oA2gIR0CB63hScbzcdX2UKGgGR0CG0VB/I8yOaAdN6ANoCEdAgfkWattALXV9lChoBkdAh1T41pCa7WgHTegDaAhHQIISinpB5X51fZQoaAZHQIWms1jy4F1oB03oA2gIR0CCFYcLBsQ/dX2UKGgGR0CHGqPn0TURaAdN6ANoCEdAgiCBqCYkV3V9lChoBkdAiHs7K7qY7mgHTegDaAhHQIIuas+3Yth1fZQoaAZHQIg0kO09hZ1oB03oA2gIR0CCUDHKfWc0dX2UKGgGR0CGGeCvovBaaAdN6ANoCEdAglSXkgfU4XV9lChoBkdAiIbKoAGSp2gHTegDaAhHQIJjFS0jTrp1fZQoaAZHQIfjV6HCXQdoB03oA2gIR0CCcOCvHLiddX2UKGgGR0CJzQ0HhS9/aAdN6ANoCEdAgoogJC0F83V9lChoBkdAiQgl0xM362gHTegDaAhHQIKM6OxSpBJ1fZQoaAZHQIlexQLux8loB03oA2gIR0CCl7VhkRSQdX2UKGgGR0CKSMk8A7xNaAdN6ANoCEdAgqUF9BrvcHV9lChoBkdAhs3p6Y3Ns2gHTegDaAhHQILFdy7wrlN1fZQoaAZHQIjZFECvHLloB03oA2gIR0CCyl+irT6SdX2UKGgGR0CGe+XenAIqaAdN6ANoCEdAgtpNix3V1HV9lChoBkdAiBswDvE0i2gHTegDaAhHQILn8+C9RJp1fZQoaAZHQIdLLkhib2FoB03oA2gIR0CDAWTg2qDLdX2UKGgGR0CHVAuTRplCaAdN6ANoCEdAgwRV6E8JU3V9lChoBkdAhrMjziCJ42gHTegDaAhHQIMPh+hGpdd1fZQoaAZHQIRWp11W8yxoB03oA2gIR0CDHVKzRhMKdX2UKGgGR0CFgV2mHgxbaAdN6ANoCEdAgz21clgMMXV9lChoBkdAh/oe5nUUf2gHTegDaAhHQINCWOEM9bJ1fZQoaAZHQIdHFuejEehoB03oA2gIR0CDUnomois5dX2UKGgGR0CHG0iudPLxaAdN6ANoCEdAg2AQQcxTKnV9lChoBkdAht/MsYl6aGgHTegDaAhHQIN6il+EytV1fZQoaAZHQIZOI0Mw1zhoB03oA2gIR0CDfsPp6hQFdX2UKGgGR0CFEzNiYsunaAdN6ANoCEdAg478r7O3UnV9lChoBkdAhf1eXqqwQmgHTegDaAhHQIOjfKMefZp1fZQoaAZHQIMVn336AOJoB03oA2gIR0CDySZWJaaDdX2UKGgGR0CGBgUSIxgzaAdN6ANoCEdAg8yHdweeWnV9lChoBkdAh4fnMdLg42gHTegDaAhHQIPXjGcWj451fZQoaAZHQIeIAbp/wy9oB03oA2gIR0CD5RsEaESNdX2UKGgGR0CFy+fDDTBqaAdN6ANoCEdAg/4XvYvnKXV9lChoBkdAhhjbHp8neGgHTegDaAhHQIQA4Jswco91fZQoaAZHQIbh/YODrZ9oB03oA2gIR0CEC64+bExZdX2UKGgGR0CH8Ybz9S/CaAdN6ANoCEdAhBklm4Ajp3V9lChoBkdAhlfKNyYG+2gHTegDaAhHQIQ+NNBWxQl1fZQoaAZHQIZO11+y7f5oB03oA2gIR0CEQqYb83uNdX2UKGgGR0CHTEoNutOmaAdN6ANoCEdAhE27EpAlfXV9lChoBkdAiAm9aEBbOmgHTegDaAhHQIRbS31BdD91fZQoaAZHQIamOmm+CbtoB03oA2gIR0CEdMAxzq8ldX2UKGgGR0CI4dXf642CaAdN6ANoCEdAhHeood+5OXV9lChoBkdAhVGQLux8lWgHTegDaAhHQISCetEG7jF1fZQoaAZHQIY81JOFg2JoB03oA2gIR0CEj/WSU1Q7dX2UKGgGR0CGCGdsBQvYaAdN6ANoCEdAhLQjwQUYbnV9lChoBkdAin7vHtF8X2gHTegDaAhHQIS4qcVgx8F1fZQoaAZHQIimjPyCnP5oB03oA2gIR0CExUOdXko4dX2UKGgGR0CIdxmGM4tIaAdN6ANoCEdAhNLfBWPtD3VlLg=="
91
+ },
92
+ "ep_success_buffer": {
93
+ ":type:": "<class 'collections.deque'>",
94
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
95
+ },
96
+ "_n_updates": 10589,
97
+ "n_steps": 5,
98
+ "gamma": 0.99,
99
+ "gae_lambda": 1.0,
100
+ "ent_coef": 0.0,
101
+ "vf_coef": 0.5,
102
+ "max_grad_norm": 0.5,
103
+ "normalize_advantage": false
104
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be6683e2ae49d7761ca4d33460f7dd74dbcfca04dcd3072c3f9f935a3ef70825
3
+ size 54206
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c059b39de968ae9c5469b8d766b6b4ebab29c281da592068588c216658c6936d
3
+ size 54974
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb4cfad3c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb4cfad3ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb4cfad3d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb4cfad3dc0>", "_build": "<function ActorCriticPolicy._build at 0x7fb4cfad3e50>", "forward": "<function ActorCriticPolicy.forward at 0x7fb4cfad3ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb4cfad3f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb4cfa55040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb4cfa550d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb4cfa55160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb4cfa551f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb4cfa55280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb4cfa560c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 200000, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680146533116849765, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGfDQjyrFgLArD8mwGYE2r75MAe/LlRyPjGTq74R2BO/nMDbPkIGIL8XP2G+QFLBvMdy273AFkG/aIUzP56G9D4wWly/pksSv4xc7T47doU+5h6sPm2uFr+I/Wg+8R7SPhR8mT4CSdI+bDanPq08dz7dpFE//VEIQAaHfb9CC6o92OQqvgKThT67VEE/zuUBPkYI4j63FKS90S2KP5OlEMBk1BLA8vTnPOThb797cAI+yujmPnki6r6x6sK8ssktPzgajb+fUeS8xLKqvsxNyTwUfJk+AknSPmw2pz6tPHc+kK7bvFPR+L+5TBTAercnvx2Goj1zX/a95NmHvtNJtL4OguE+biY5vT/2Yb7bhDu9+PU7vz1DKT+Kbyc/NuzWvV5zer+BmAA+77q3PgH2FL4WBiW+jkEDPyY3DD4tHAy/FHyZPgJJ0j5sNqc+rTx3Pn6EUL279qu/E9pfvyre4z6iLs29w+oHvKYOnLspyXA/I7ThPnjPSrzcIl++j4aAvN2e67+tpsE+3ASnPC4y7T6NkIG+6FctvoBUGr9ojmk+vS11v1bMfL75CYm+Yk2BvBR8mT4CSdI+bDanPq08dz6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACLGuW1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmHASPgAAAAB9DPi/AAAAAFmioT0AAAAAY7fqPwAAAABowcq9AAAAALlf5D8AAAAA1rOovQAAAAAJ9/G/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANXGBtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMzY+z0AAAAA9N7qvwAAAABrSCw9AAAAADLl3D8AAAAAdxVLvQAAAABEVfc/AAAAACeXQT0AAAAAnCrdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH47hzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC03Aa+AAAAAM4m778AAAAAonsCPgAAAAD+i9s/AAAAALP/Hj0AAAAAv5XePwAAAABSY/o9AAAAAO1y9r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJKsU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAnc7TvQAAAAB9iOG/AAAAAG1iTT0AAAAAraHaPwAAAAAt7628AAAAAHRt4j8AAAAAfb4HvgAAAABuBvK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIDqiNlyzX2MAWyUTegDjAF0lEdAffeQBPsRhHV9lChoBkdAgtuByCFsYWgHTegDaAhHQH4BFqJuVHF1fZQoaAZHQIH3p8WsRxtoB03oA2gIR0B+IBvbXYlIdX2UKGgGR0CDTjqW1MM7aAdN6ANoCEdAfjzo73fygHV9lChoBkdAg39cBEKE4GgHTegDaAhHQH5xVpsXSBt1fZQoaAZHQILv7wDvE0loB03oA2gIR0B+d30lJHy3dX2UKGgGR0CDXA8xKxs3aAdN6ANoCEdAfo6QOFxn4HV9lChoBkdAhPFwQ176YWgHTegDaAhHQH6rJ3C9AX51fZQoaAZHQIQ1aBshxHZoB03oA2gIR0B+9Bl18stkdX2UKGgGR0CECWAxzq8laAdN6ANoCEdAfv1l/H5rQHV9lChoBkdAg6YtTkyULWgHTegDaAhHQH8ZT4tYjjd1fZQoaAZHQIP89IK+i8FoB03oA2gIR0B/NYRFqi48dX2UKGgGR0CEkZYwIt17aAdN6ANoCEdAf2pZf2K2rnV9lChoBkdAhXlbH6uW8mgHTegDaAhHQH9wa6reZXx1fZQoaAZHQITBlzIV/MJoB03oA2gIR0B/h2PuG9HudX2UKGgGR0CGVTxn3+MqaAdN6ANoCEdAf6NpS75EdHV9lChoBkdAh5okUj9n9WgHTegDaAhHQH/tPxtpEhJ1fZQoaAZHQIQRejfvWpZoB03oA2gIR0B/9xe3QUpNdX2UKGgGR0CGMt0lqrR0aAdN6ANoCEdAgAjChFmWdHV9lChoBkdAh9olfZ26kWgHTegDaAhHQIAWpAB1cMV1fZQoaAZHQIUjE5p8F6loB03oA2gIR0CAMLW9US7HdX2UKGgGR0CG3FiqhlDnaAdN6ANoCEdAgDOo0ygwoXV9lChoBkdAhT+x2r4nGGgHTegDaAhHQIA++wkgOjJ1fZQoaAZHQITSwxYaHbhoB03oA2gIR0CATLk078vVdX2UKGgGR0CFHoekpI+XaAdN6ANoCEdAgHIeYlY2bXV9lChoBkdAhnI3Zwn6VWgHTegDaAhHQIB2qLVFx4p1fZQoaAZHQIV2Jradtl9oB03oA2gIR0CAgtoDgZTAdX2UKGgGR0CG4Qa86FM7aAdN6ANoCEdAgJCyDZlFt3V9lChoBkdAfmUYEGJN02gHTegDaAhHQICqMELYwqR1fZQoaAZHQIS5d/8VHnVoB03oA2gIR0CArSL61stTdX2UKGgGR0CCSnfzjFQ3aAdN6ANoCEdAgLgCSJTESHV9lChoBkdAhBBsi0OVgWgHTegDaAhHQIDFmKKpDNR1fZQoaAZHQIdNkQZn+Q5oB03oA2gIR0CA6YjfvWpZdX2UKGgGR0CGcqZSeiBYaAdN6ANoCEdAgO4dTHbRGHV9lChoBkdAhZ6s7U5MlGgHTegDaAhHQID7M9GI9DB1fZQoaAZHQIamQ+8oQWhoB03oA2gIR0CBCPX9zfaYdX2UKGgGR0CGFd6ZYxL1aAdN6ANoCEdAgSJEuQIUrXV9lChoBkdAhbuWbXpW3mgHTegDaAhHQIElPldTo+x1fZQoaAZHQIfvOAAhje9oB03oA2gIR0CBMEFdLQHBdX2UKGgGR0CHIaNFSbYsaAdN6ANoCEdAgT3tdzGPxXV9lChoBkdAiax3EAHVw2gHTegDaAhHQIFhLj5sTFl1fZQoaAZHQIfOQqEvkBFoB03oA2gIR0CBZbduYQardX2UKGgGR0CHLSiFj/dZaAdN6ANoCEdAgXNZoXbdrXV9lChoBkdAhybDdYW+G2gHTegDaAhHQIGBMIRh+fB1fZQoaAZHQIVfAmb9ZRtoB03oA2gIR0CBmsPYnOSodX2UKGgGR0CH02M+eOGTaAdN6ANoCEdAgZ2SVObiInV9lChoBkdAho4qVY6nzmgHTegDaAhHQIGof9tMwlB1fZQoaAZHQIYvwEB8x9JoB03oA2gIR0CBtem3vx6OdX2UKGgGR0CJOYifQKKHaAdN6ANoCEdAgdjCADq4Y3V9lChoBkdAhVKDvd/KAGgHTegDaAhHQIHdMCV8kUt1fZQoaAZHQIUqjyc0+C9oB03oA2gIR0CB63hScbzcdX2UKGgGR0CG0VB/I8yOaAdN6ANoCEdAgfkWattALXV9lChoBkdAh1T41pCa7WgHTegDaAhHQIISinpB5X51fZQoaAZHQIWms1jy4F1oB03oA2gIR0CCFYcLBsQ/dX2UKGgGR0CHGqPn0TURaAdN6ANoCEdAgiCBqCYkV3V9lChoBkdAiHs7K7qY7mgHTegDaAhHQIIuas+3Yth1fZQoaAZHQIg0kO09hZ1oB03oA2gIR0CCUDHKfWc0dX2UKGgGR0CGGeCvovBaaAdN6ANoCEdAglSXkgfU4XV9lChoBkdAiIbKoAGSp2gHTegDaAhHQIJjFS0jTrp1fZQoaAZHQIfjV6HCXQdoB03oA2gIR0CCcOCvHLiddX2UKGgGR0CJzQ0HhS9/aAdN6ANoCEdAgoogJC0F83V9lChoBkdAiQgl0xM362gHTegDaAhHQIKM6OxSpBJ1fZQoaAZHQIlexQLux8loB03oA2gIR0CCl7VhkRSQdX2UKGgGR0CKSMk8A7xNaAdN6ANoCEdAgqUF9BrvcHV9lChoBkdAhs3p6Y3Ns2gHTegDaAhHQILFdy7wrlN1fZQoaAZHQIjZFECvHLloB03oA2gIR0CCyl+irT6SdX2UKGgGR0CGe+XenAIqaAdN6ANoCEdAgtpNix3V1HV9lChoBkdAiBswDvE0i2gHTegDaAhHQILn8+C9RJp1fZQoaAZHQIdLLkhib2FoB03oA2gIR0CDAWTg2qDLdX2UKGgGR0CHVAuTRplCaAdN6ANoCEdAgwRV6E8JU3V9lChoBkdAhrMjziCJ42gHTegDaAhHQIMPh+hGpdd1fZQoaAZHQIRWp11W8yxoB03oA2gIR0CDHVKzRhMKdX2UKGgGR0CFgV2mHgxbaAdN6ANoCEdAgz21clgMMXV9lChoBkdAh/oe5nUUf2gHTegDaAhHQINCWOEM9bJ1fZQoaAZHQIdHFuejEehoB03oA2gIR0CDUnomois5dX2UKGgGR0CHG0iudPLxaAdN6ANoCEdAg2AQQcxTKnV9lChoBkdAht/MsYl6aGgHTegDaAhHQIN6il+EytV1fZQoaAZHQIZOI0Mw1zhoB03oA2gIR0CDfsPp6hQFdX2UKGgGR0CFEzNiYsunaAdN6ANoCEdAg478r7O3UnV9lChoBkdAhf1eXqqwQmgHTegDaAhHQIOjfKMefZp1fZQoaAZHQIMVn336AOJoB03oA2gIR0CDySZWJaaDdX2UKGgGR0CGBgUSIxgzaAdN6ANoCEdAg8yHdweeWnV9lChoBkdAh4fnMdLg42gHTegDaAhHQIPXjGcWj451fZQoaAZHQIeIAbp/wy9oB03oA2gIR0CD5RsEaESNdX2UKGgGR0CFy+fDDTBqaAdN6ANoCEdAg/4XvYvnKXV9lChoBkdAhhjbHp8neGgHTegDaAhHQIQA4Jswco91fZQoaAZHQIbh/YODrZ9oB03oA2gIR0CEC64+bExZdX2UKGgGR0CH8Ybz9S/CaAdN6ANoCEdAhBklm4Ajp3V9lChoBkdAhlfKNyYG+2gHTegDaAhHQIQ+NNBWxQl1fZQoaAZHQIZO11+y7f5oB03oA2gIR0CEQqYb83uNdX2UKGgGR0CHTEoNutOmaAdN6ANoCEdAhE27EpAlfXV9lChoBkdAiAm9aEBbOmgHTegDaAhHQIRbS31BdD91fZQoaAZHQIamOmm+CbtoB03oA2gIR0CEdMAxzq8ldX2UKGgGR0CI4dXf642CaAdN6ANoCEdAhHeood+5OXV9lChoBkdAhVGQLux8lWgHTegDaAhHQISCetEG7jF1fZQoaAZHQIY81JOFg2JoB03oA2gIR0CEj/WSU1Q7dX2UKGgGR0CGCGdsBQvYaAdN6ANoCEdAhLQjwQUYbnV9lChoBkdAin7vHtF8X2gHTegDaAhHQIS4qcVgx8F1fZQoaAZHQIimjPyCnP5oB03oA2gIR0CExUOdXko4dX2UKGgGR0CIdxmGM4tIaAdN6ANoCEdAhNLfBWPtD3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10589, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (203 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 761.7208369494998, "std_reward": 57.34345717821021, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-30T03:31:32.318024"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97db63b25f2e79adcbf92e66dfc54740ec038c1ee58afe0df41a4e6829c1d258
3
+ size 2136