--- license: apache-2.0 pipeline_tag: image-classification library_name: transformers tags: - deep-fake - ViT - detection - Image base_model: - google/vit-base-patch16-224-in21k datasets: - prithivMLmods/OpenDeepfake-Preview language: - en --- # deepfake-detector-model > deepfake-detector-model is a vision-language model fine-tuned from `google/vit-base-patch16-224-in21k` for binary image classification. It is trained to detect whether an image is fake or real using the *OpenDeepfake-Preview* dataset. The model uses the `ViTForImageClassification` architecture. --- ## Label Space: 2 Classes The model classifies an image as either: ``` Class 0: fake Class 1: real ``` --- ## Install Dependencies ```bash pip install -q transformers torch pillow gradio hf_xet ``` --- ## Inference Code ```python import gradio as gr from transformers import ViTImageProcessor, ViTForImageClassification from PIL import Image import torch # Load model and processor model_name = "your-username/deepfake-detector-model" model = ViTForImageClassification.from_pretrained(model_name) processor = ViTImageProcessor.from_pretrained(model_name) # Updated label mapping labels_list = ['fake', 'real'] def classify_image(image): image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() prediction = { labels_list[i]: round(probs[i], 3) for i in range(len(probs)) } return prediction # Gradio Interface iface = gr.Interface( fn=classify_image, inputs=gr.Image(type="numpy"), outputs=gr.Label(num_top_classes=2, label="Deepfake Detection"), title="deepfake-detector-model", description="Upload an image to detect whether it is AI-generated (fake) or a real photograph (real), using the OpenDeepfake-Preview dataset." ) if __name__ == "__main__": iface.launch() ``` --- ## Intended Use `deepfake-detector-model` is designed for: * **Deepfake Detection** – Identify AI-generated or manipulated images. * **Content Moderation** – Flag synthetic or fake visual content. * **Dataset Curation** – Remove synthetic samples from mixed datasets. * **Visual Authenticity Verification** – Check the integrity of visual media. * **Digital Forensics** – Support image source verification and traceability.