File size: 3,194 Bytes
c50fb9a
e001be0
2ce7670
 
 
 
7a170d6
2f5b1ac
0a459a1
e001be0
0a459a1
7b35fb0
 
 
 
c50fb9a
de177d5
 
aa06c8e
2295864
aa06c8e
2295864
bb36ed6
0b8c770
 
 
1b84216
 
 
 
91ab411
 
1b84216
91ab411
 
 
1b84216
 
91ab411
7820d58
7b35fb0
bb36ed6
7b35fb0
482ab4f
1b84216
482ab4f
7b35fb0
 
 
 
bb36ed6
7b35fb0
bb36ed6
7b35fb0
bb36ed6
7b35fb0
 
 
bb36ed6
7b35fb0
bb36ed6
7b35fb0
bb36ed6
 
7b35fb0
1b84216
bb36ed6
 
 
7b35fb0
2295864
1b84216
 
bb36ed6
7b35fb0
1b84216
 
 
 
bb36ed6
7b35fb0
 
 
bb36ed6
7b35fb0
 
 
 
46438bd
7b35fb0
1b84216
7b35fb0
5bab673
7b35fb0
5bab673
7b35fb0
 
 
 
1b84216
7b35fb0
1b84216
7b35fb0
bb36ed6
7b35fb0
 
 
bb36ed6
7b35fb0
bb36ed6
7b35fb0
bb36ed6
7b35fb0
bb36ed6
1b84216
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
---
license: apache-2.0
pipeline_tag: image-classification
library_name: transformers
tags:
- deep-fake
- detection
- Image
- SigLIP2
base_model:
- google/siglip2-base-patch16-512
datasets:
- prithivMLmods/OpenDeepfake-Preview
language:
- en
---
 
![DF.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/du5WF3GmRq5czAvXyuggx.png)

# deepfake-detector-model-v1

> `deepfake-detector-model-v1` is a vision-language encoder model fine-tuned from google/siglip-base-patch16-512 for binary deepfake image classification. It is trained to detect whether an image is real or generated using synthetic media techniques. The model uses the `SiglipForImageClassification` architecture.

> [!warning]
Experimental

```py
Classification Report:
              precision    recall  f1-score   support

        Fake     0.9718    0.9155    0.9428     10000
        Real     0.9201    0.9734    0.9460      9999

    accuracy                         0.9444     19999
   macro avg     0.9459    0.9444    0.9444     19999
weighted avg     0.9459    0.9444    0.9444     19999
```

![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/KIQGQnaSxrY1F2TQNpRLR.png)

---

## Label Space: 2 Classes

The model classifies an image as one of the following:

```
Class 0: fake  
Class 1: real
```

---

## Install Dependencies

```bash
pip install -q transformers torch pillow gradio hf_xet
```

---

## Inference Code

```python
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch

# Load model and processor
model_name = "prithivMLmods/deepfake-detector-model-v1"  
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)

# Updated label mapping
id2label = {
    "0": "fake",
    "1": "real"
}

def classify_image(image):
    image = Image.fromarray(image).convert("RGB")
    inputs = processor(images=image, return_tensors="pt")

    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
        probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()

    prediction = {
        id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
    }

    return prediction

# Gradio Interface
iface = gr.Interface(
    fn=classify_image,
    inputs=gr.Image(type="numpy"),
    outputs=gr.Label(num_top_classes=2, label="Deepfake Classification"),
    title="deepfake-detector-model",
    description="Upload an image to classify whether it is real or fake using a deepfake detection model."
)

if __name__ == "__main__":
    iface.launch()
```

---

## Intended Use

`deepfake-detector-model` is designed for:

* **Deepfake Detection** – Accurately identify fake images generated by AI.
* **Media Authentication** – Verify the authenticity of digital visual content.
* **Content Moderation** – Assist in filtering synthetic media in online platforms.
* **Forensic Analysis** – Support digital forensics by detecting manipulated visual data.
* **Security Applications** – Integrate into surveillance systems for authenticity verification.