File size: 3,194 Bytes
c50fb9a e001be0 2ce7670 7a170d6 2f5b1ac 0a459a1 e001be0 0a459a1 7b35fb0 c50fb9a de177d5 aa06c8e 2295864 aa06c8e 2295864 bb36ed6 0b8c770 1b84216 91ab411 1b84216 91ab411 1b84216 91ab411 7820d58 7b35fb0 bb36ed6 7b35fb0 482ab4f 1b84216 482ab4f 7b35fb0 bb36ed6 7b35fb0 bb36ed6 7b35fb0 bb36ed6 7b35fb0 bb36ed6 7b35fb0 bb36ed6 7b35fb0 bb36ed6 7b35fb0 1b84216 bb36ed6 7b35fb0 2295864 1b84216 bb36ed6 7b35fb0 1b84216 bb36ed6 7b35fb0 bb36ed6 7b35fb0 46438bd 7b35fb0 1b84216 7b35fb0 5bab673 7b35fb0 5bab673 7b35fb0 1b84216 7b35fb0 1b84216 7b35fb0 bb36ed6 7b35fb0 bb36ed6 7b35fb0 bb36ed6 7b35fb0 bb36ed6 7b35fb0 bb36ed6 1b84216 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
---
license: apache-2.0
pipeline_tag: image-classification
library_name: transformers
tags:
- deep-fake
- detection
- Image
- SigLIP2
base_model:
- google/siglip2-base-patch16-512
datasets:
- prithivMLmods/OpenDeepfake-Preview
language:
- en
---

# deepfake-detector-model-v1
> `deepfake-detector-model-v1` is a vision-language encoder model fine-tuned from google/siglip-base-patch16-512 for binary deepfake image classification. It is trained to detect whether an image is real or generated using synthetic media techniques. The model uses the `SiglipForImageClassification` architecture.
> [!warning]
Experimental
```py
Classification Report:
precision recall f1-score support
Fake 0.9718 0.9155 0.9428 10000
Real 0.9201 0.9734 0.9460 9999
accuracy 0.9444 19999
macro avg 0.9459 0.9444 0.9444 19999
weighted avg 0.9459 0.9444 0.9444 19999
```

---
## Label Space: 2 Classes
The model classifies an image as one of the following:
```
Class 0: fake
Class 1: real
```
---
## Install Dependencies
```bash
pip install -q transformers torch pillow gradio hf_xet
```
---
## Inference Code
```python
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/deepfake-detector-model-v1"
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
# Updated label mapping
id2label = {
"0": "fake",
"1": "real"
}
def classify_image(image):
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
prediction = {
id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
}
return prediction
# Gradio Interface
iface = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(num_top_classes=2, label="Deepfake Classification"),
title="deepfake-detector-model",
description="Upload an image to classify whether it is real or fake using a deepfake detection model."
)
if __name__ == "__main__":
iface.launch()
```
---
## Intended Use
`deepfake-detector-model` is designed for:
* **Deepfake Detection** – Accurately identify fake images generated by AI.
* **Media Authentication** – Verify the authenticity of digital visual content.
* **Content Moderation** – Assist in filtering synthetic media in online platforms.
* **Forensic Analysis** – Support digital forensics by detecting manipulated visual data.
* **Security Applications** – Integrate into surveillance systems for authenticity verification. |