prithivMLmods commited on
Commit
4016b7b
·
verified ·
1 Parent(s): 0a4a04e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -1
README.md CHANGED
@@ -15,4 +15,68 @@ tags:
15
  - web
16
  - llm
17
  - fineweb
18
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  - web
16
  - llm
17
  - fineweb
18
+ ---
19
+ # **WebMind-7B-v0.1**
20
+
21
+ WebMind-7B-v0.1 is based on the Qwen 2.5 7B modality architecture, designed to enhance the reasoning capabilities of 7B-parameter models. It has been fine-tuned on a synthetic dataset derived from open web collections and mathematical synthetic logits, further optimizing its chain-of-thought (CoT) reasoning and logical problem-solving abilities. The model demonstrates significant improvements in context understanding, structured data processing, and long-context comprehension, making it ideal for complex reasoning tasks, instruction-following, and text generation.
22
+
23
+ ### **Key Improvements**
24
+ 1. **Enhanced Knowledge and Expertise**: Improved mathematical reasoning, coding proficiency, and structured data processing.
25
+ 2. **Fine-Tuned Instruction Following**: Optimized for precise responses, structured outputs (e.g., JSON), and generating long texts (8K+ tokens).
26
+ 3. **Greater Adaptability**: Better role-playing capabilities and resilience to diverse system prompts.
27
+ 4. **Long-Context Support**: Handles up to **64K tokens** and generates up to **4K tokens** per output.
28
+ 5. **Multilingual Proficiency**: Supports over **29 languages**, including Chinese, English, French, Spanish, Portuguese, German, and more.
29
+
30
+ ### **Quickstart with Transformers**
31
+
32
+ ```python
33
+ from transformers import AutoModelForCausalLM, AutoTokenizer
34
+
35
+ model_name = "prithivMLmods/WebMind-7B-v0.1"
36
+
37
+ model = AutoModelForCausalLM.from_pretrained(
38
+ model_name,
39
+ torch_dtype="auto",
40
+ device_map="auto",
41
+ trust_remote_code=True
42
+ )
43
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
44
+
45
+ prompt = "Give me a short introduction to large language models."
46
+ messages = [
47
+ {"role": "system", "content": "You are an advanced AI assistant with expert-level reasoning and knowledge."},
48
+ {"role": "user", "content": prompt}
49
+ ]
50
+ text = tokenizer.apply_chat_template(
51
+ messages,
52
+ tokenize=False,
53
+ add_generation_prompt=True
54
+ )
55
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
56
+
57
+ generated_ids = model.generate(
58
+ **model_inputs,
59
+ max_new_tokens=512
60
+ )
61
+ generated_ids = [
62
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
63
+ ]
64
+
65
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
66
+ print(response)
67
+ ```
68
+
69
+ ### **Intended Use**
70
+ - **Advanced Reasoning & Context Understanding**: Designed for logical deduction, multi-step problem-solving, and complex knowledge-based tasks.
71
+ - **Mathematical & Scientific Problem-Solving**: Enhanced capabilities for calculations, theorem proving, and scientific queries.
72
+ - **Code Generation & Debugging**: Generates and optimizes code across multiple programming languages.
73
+ - **Structured Data Analysis**: Processes tables, JSON, and structured outputs, making it ideal for data-centric tasks.
74
+ - **Multilingual Applications**: High proficiency in over 29 languages, enabling global-scale applications.
75
+ - **Extended Content Generation**: Supports detailed document writing, research reports, and instructional guides.
76
+
77
+ ### **Limitations**
78
+ 1. **Computational Requirements**: Despite being a **7B-parameter** model, it still requires a capable GPU for efficient inference.
79
+ 2. **Language-Specific Variability**: Performance may vary across supported languages, especially for low-resource languages.
80
+ 3. **Potential Error Accumulation**: Long-text generation can sometimes introduce inconsistencies over extended outputs.
81
+ 4. **Limited Real-World Awareness**: Knowledge is restricted to training data and may not reflect recent world events.
82
+ 5. **Prompt Sensitivity**: Outputs can depend on the specificity and clarity of the input prompt.