prithivMLmods commited on
Commit
7974b9a
·
verified ·
1 Parent(s): 6458211

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -3
README.md CHANGED
@@ -1,3 +1,69 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ # **Megatron-Opus-7B-Exp**
6
+
7
+ Megatron-Opus-7B-Exp is based on the Qwen 2.5 7B modality architecture, designed to enhance the reasoning capabilities of 7B-parameter models. It has been fine-tuned on a Synthetic dataset entries based on one half of Qwen’s QWQ and DeepSeek R1, further optimizing its chain-of-thought (CoT) reasoning and logical problem-solving abilities. The model demonstrates significant improvements in context understanding, structured data processing, and long-context comprehension, making it ideal for complex reasoning tasks, instruction-following, and text generation.
8
+
9
+ ### **Key Improvements**
10
+ 1. **Advanced Reasoning & Logic**: Optimized for multi-step problem-solving, logical deduction, and contextual analysis.
11
+ 2. **Fine-Tuned Instruction Following**: Generates precise responses, structured outputs (e.g., JSON), and extended long-form text (8K+ tokens).
12
+ 3. **Greater Adaptability**: Excels in role-playing, multi-turn dialogues, and diverse system prompts.
13
+ 4. **Long-Context Support**: Handles up to **128K tokens** and generates up to **8K tokens** per output.
14
+ 5. **Multilingual Proficiency**: Supports over **29 languages**, including Chinese, English, French, Spanish, Portuguese, German, and more.
15
+
16
+ ### **Quickstart with Transformers**
17
+
18
+ ```python
19
+ from transformers import AutoModelForCausalLM, AutoTokenizer
20
+
21
+ model_name = "prithivMLmods/Megatron-Opus-7B-Exp"
22
+
23
+ model = AutoModelForCausalLM.from_pretrained(
24
+ model_name,
25
+ torch_dtype="auto",
26
+ device_map="auto",
27
+ trust_remote_code=True
28
+ )
29
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
30
+
31
+ prompt = "Explain the concept of logical reasoning in AI."
32
+ messages = [
33
+ {"role": "system", "content": "You are an expert AI assistant specialized in reasoning and logic."},
34
+ {"role": "user", "content": prompt}
35
+ ]
36
+ text = tokenizer.apply_chat_template(
37
+ messages,
38
+ tokenize=False,
39
+ add_generation_prompt=True
40
+ )
41
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
42
+
43
+ generated_ids = model.generate(
44
+ **model_inputs,
45
+ max_new_tokens=512
46
+ )
47
+ generated_ids = [
48
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
49
+ ]
50
+
51
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
52
+ print(response)
53
+ ```
54
+
55
+ ### **Intended Use**
56
+ - **Advanced Logical & Analytical Reasoning**: Designed for problem-solving, multi-step deductions, and cognitive reasoning tasks.
57
+ - **Mathematical & Scientific Computation**: Supports theorem proving, complex calculations, and scientific knowledge retrieval.
58
+ - **Code Generation & Debugging**: Generates optimized code, detects errors, and improves programming workflows.
59
+ - **Structured Data Analysis**: Processes tables, JSON, and structured formats for data-centric applications.
60
+ - **Multilingual Reasoning & Translation**: High proficiency across **29+ languages** for international applications.
61
+ - **Extended Text Generation**: Capable of generating research papers, instructional guides, and in-depth reports.
62
+
63
+ ### **Limitations**
64
+ 1. **High Computational Requirements**: Due to its **7B parameters** and **128K context support**, it requires powerful GPUs or TPUs for efficient inference.
65
+ 2. **Language-Specific Variability**: Performance may differ across supported languages, especially for low-resource languages.
66
+ 3. **Potential Error Accumulation**: Long-form text generation can introduce inconsistencies over extended outputs.
67
+ 4. **Limited Real-World Awareness**: Knowledge is restricted to training data and may not reflect recent world events.
68
+ 5. **Prompt Sensitivity**: The quality of responses depends on the specificity and clarity of the input prompt.
69
+