prithivMLmods commited on
Commit
5d7501a
·
verified ·
1 Parent(s): 524dc21

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -1
README.md CHANGED
@@ -10,5 +10,69 @@ tags:
10
  - Coding
11
  - Math
12
  ---
13
-
14
  ![corpus2.gif](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/XUiPFzD6nKvXqkCTX94Z5.gif)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  - Coding
11
  - Math
12
  ---
 
13
  ![corpus2.gif](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/XUiPFzD6nKvXqkCTX94Z5.gif)
14
+ # **Megatron-Corpus-14B-Exp.v2**
15
+
16
+ Megatron-Corpus-14B-Exp.v2 is based on the Qwen 2.5 14B modality architecture, designed to enhance the reasoning capabilities of 14B-parameter models. It has been fine-tuned on a synthetic dataset based on math corpus, further optimizing its chain-of-thought (CoT) reasoning and logical problem-solving abilities. The model demonstrates significant improvements in context understanding, structured data processing, and long-context comprehension, making it ideal for complex reasoning tasks, instruction-following, and text generation.
17
+
18
+ ### **Key Improvements**
19
+ 1. **Advanced Reasoning & Logic**: Optimized for multi-step problem-solving, logical deduction, and contextual analysis.
20
+ 2. **Fine-Tuned Instruction Following**: Generates precise responses, structured outputs (e.g., JSON), and extended long-form text (8K+ tokens).
21
+ 3. **Greater Adaptability**: Excels in role-playing, multi-turn dialogues, and diverse system prompts.
22
+ 4. **Long-Context Support**: Handles up to **128K tokens** and generates up to **8K tokens** per output.
23
+ 5. **Multilingual Proficiency**: Supports over **29 languages**, including Chinese, English, French, Spanish, Portuguese, German, and more.
24
+
25
+ ### **Quickstart with Transformers**
26
+
27
+ ```python
28
+ from transformers import AutoModelForCausalLM, AutoTokenizer
29
+
30
+ model_name = "prithivMLmods/Megatron-Corpus-14B-Exp.v2"
31
+
32
+ model = AutoModelForCausalLM.from_pretrained(
33
+ model_name,
34
+ torch_dtype="auto",
35
+ device_map="auto",
36
+ trust_remote_code=True
37
+ )
38
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
39
+
40
+ prompt = "Explain the concept of logical reasoning in AI."
41
+ messages = [
42
+ {"role": "system", "content": "You are an expert AI assistant specialized in reasoning and logic."},
43
+ {"role": "user", "content": prompt}
44
+ ]
45
+ text = tokenizer.apply_chat_template(
46
+ messages,
47
+ tokenize=False,
48
+ add_generation_prompt=True
49
+ )
50
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
51
+
52
+ generated_ids = model.generate(
53
+ **model_inputs,
54
+ max_new_tokens=512
55
+ )
56
+ generated_ids = [
57
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
58
+ ]
59
+
60
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
61
+ print(response)
62
+ ```
63
+
64
+ ### **Intended Use**
65
+ - **Advanced Logical & Analytical Reasoning**: Designed for problem-solving, multi-step deductions, and cognitive reasoning tasks.
66
+ - **Mathematical & Scientific Computation**: Supports theorem proving, complex calculations, and scientific knowledge retrieval.
67
+ - **Code Generation & Debugging**: Generates optimized code, detects errors, and improves programming workflows.
68
+ - **Structured Data Analysis**: Processes tables, JSON, and structured formats for data-centric applications.
69
+ - **Multilingual Reasoning & Translation**: High proficiency across **29+ languages** for international applications.
70
+ - **Extended Text Generation**: Capable of generating research papers, instructional guides, and in-depth reports.
71
+
72
+ ### **Limitations**
73
+ 1. **High Computational Requirements**: Due to its **14B parameters** and **128K context support**, it requires powerful GPUs or TPUs for efficient inference.
74
+ 2. **Language-Specific Variability**: Performance may differ across supported languages, especially for low-resource languages.
75
+ 3. **Potential Error Accumulation**: Long-form text generation can introduce inconsistencies over extended outputs.
76
+ 4. **Limited Real-World Awareness**: Knowledge is restricted to training data and may not reflect recent world events.
77
+ 5. **Prompt Sensitivity**: The quality of responses depends on the specificity and clarity of the input prompt.
78
+