prithivMLmods commited on
Commit
e2e7098
·
verified ·
1 Parent(s): d4a7e97

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +112 -0
README.md CHANGED
@@ -13,3 +13,115 @@ tags:
13
  - flux
14
  ---
15
  ![8.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/3L4AaG9QB2A6fnoIQavt_.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  - flux
14
  ---
15
  ![8.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/3L4AaG9QB2A6fnoIQavt_.png)
16
+
17
+ # **JSONify-Flux: A Vision-Language Model for Image Captioning & OCR**
18
+
19
+ The **JSONify-Flux** model is a fine-tuned version of Qwen2-VL, specifically tailored for **Flux-generated image analysis**, **caption extraction**, and **structured JSON formatting**. This model is optimized for tasks involving **image-to-text conversion**, **Optical Character Recognition (OCR)**, and **context-aware structured data extraction**.
20
+
21
+ #### Key Enhancements:
22
+
23
+ * **Advanced Image Understanding**: JSONify-Flux has been trained using **30 million trainable parameters** on **Flux-generated images and their captions**, ensuring precise image comprehension.
24
+
25
+ * **Optimized for JSON Output**: The model is designed to output structured JSON data, making it suitable for integration with databases, APIs, and automation pipelines.
26
+
27
+ * **Enhanced OCR Capabilities**: JSONify-Flux excels in recognizing and extracting text from images with a high degree of accuracy.
28
+
29
+ * **Multimodal Processing**: Supports both image and text inputs while generating structured JSON-formatted outputs.
30
+
31
+ * **Multilingual Support**: Trained to recognize text inside images in multiple languages, including English, Chinese, European languages, Japanese, Korean, Arabic, and more.
32
+
33
+ ### How to Use
34
+
35
+ ```python
36
+ from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
37
+ from qwen_vl_utils import process_vision_info
38
+
39
+ # Load the model with optimized parameters
40
+ model = Qwen2VLForConditionalGeneration.from_pretrained(
41
+ "prithivMLmods/JSONify-Flux", torch_dtype="auto", device_map="auto"
42
+ )
43
+
44
+ # Recommended acceleration for performance optimization
45
+ # model = Qwen2VLForConditionalGeneration.from_pretrained(
46
+ # "prithivMLmods/JSONify-Flux",
47
+ # torch_dtype=torch.bfloat16,
48
+ # attn_implementation="flash_attention_2",
49
+ # device_map="auto",
50
+ # )
51
+
52
+ # Default processor
53
+ processor = AutoProcessor.from_pretrained("prithivMLmods/JSONify-Flux")
54
+
55
+ messages = [
56
+ {
57
+ "role": "user",
58
+ "content": [
59
+ {
60
+ "type": "image",
61
+ "image": "https://flux-generated.com/sample_image.jpeg",
62
+ },
63
+ {"type": "text", "text": "Extract structured information from this image in JSON format."},
64
+ ],
65
+ }
66
+ ]
67
+
68
+ # Prepare for inference
69
+ text = processor.apply_chat_template(
70
+ messages, tokenize=False, add_generation_prompt=True
71
+ )
72
+ image_inputs, video_inputs = process_vision_info(messages)
73
+ inputs = processor(
74
+ text=[text],
75
+ images=image_inputs,
76
+ videos=video_inputs,
77
+ padding=True,
78
+ return_tensors="pt",
79
+ )
80
+ inputs = inputs.to("cuda")
81
+
82
+ # Generate output
83
+ generated_ids = model.generate(**inputs, max_new_tokens=256)
84
+ generated_ids_trimmed = [
85
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
86
+ ]
87
+ output_text = processor.batch_decode(
88
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
89
+ )
90
+ print(output_text)
91
+ ```
92
+
93
+ ### JSON Output Example:
94
+ ```json
95
+ {
96
+ "image_id": "sample_image.jpeg",
97
+ "captions": [
98
+ "A futuristic cityscape with neon lights.",
99
+ "A digital artwork featuring an abstract environment."
100
+ ],
101
+ "recognized_text": "Welcome to Flux City!",
102
+ "metadata": {
103
+ "color_palette": ["#FF5733", "#33FF57", "#3357FF"],
104
+ "detected_objects": ["building", "sign", "street light"]
105
+ }
106
+ }
107
+ ```
108
+
109
+ ### **Key Features**
110
+
111
+ 1. **Flux-Based Training Data**
112
+ - Trained using **Flux-generated images** and captions to ensure high-quality structured output.
113
+
114
+ 2. **Optical Character Recognition (OCR)**
115
+ - Extracts and processes textual content within images.
116
+
117
+ 3. **Structured JSON Output**
118
+ - Outputs information in **JSON format** for easy integration with various applications.
119
+
120
+ 4. **Conversational Capabilities**
121
+ - Handles **multi-turn interactions** with structured responses.
122
+
123
+ 5. **Image & Text Processing**
124
+ - Inputs can include **images, text, or both**, with JSON-formatted results.
125
+
126
+ 6. **Secure and Optimized Model Weights**
127
+ - Uses **Safetensors** for enhanced security and efficient model loading.