Update README.md
Browse files
README.md
CHANGED
@@ -13,3 +13,115 @@ tags:
|
|
13 |
- flux
|
14 |
---
|
15 |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
- flux
|
14 |
---
|
15 |

|
16 |
+
|
17 |
+
# **JSONify-Flux: A Vision-Language Model for Image Captioning & OCR**
|
18 |
+
|
19 |
+
The **JSONify-Flux** model is a fine-tuned version of Qwen2-VL, specifically tailored for **Flux-generated image analysis**, **caption extraction**, and **structured JSON formatting**. This model is optimized for tasks involving **image-to-text conversion**, **Optical Character Recognition (OCR)**, and **context-aware structured data extraction**.
|
20 |
+
|
21 |
+
#### Key Enhancements:
|
22 |
+
|
23 |
+
* **Advanced Image Understanding**: JSONify-Flux has been trained using **30 million trainable parameters** on **Flux-generated images and their captions**, ensuring precise image comprehension.
|
24 |
+
|
25 |
+
* **Optimized for JSON Output**: The model is designed to output structured JSON data, making it suitable for integration with databases, APIs, and automation pipelines.
|
26 |
+
|
27 |
+
* **Enhanced OCR Capabilities**: JSONify-Flux excels in recognizing and extracting text from images with a high degree of accuracy.
|
28 |
+
|
29 |
+
* **Multimodal Processing**: Supports both image and text inputs while generating structured JSON-formatted outputs.
|
30 |
+
|
31 |
+
* **Multilingual Support**: Trained to recognize text inside images in multiple languages, including English, Chinese, European languages, Japanese, Korean, Arabic, and more.
|
32 |
+
|
33 |
+
### How to Use
|
34 |
+
|
35 |
+
```python
|
36 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
37 |
+
from qwen_vl_utils import process_vision_info
|
38 |
+
|
39 |
+
# Load the model with optimized parameters
|
40 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
41 |
+
"prithivMLmods/JSONify-Flux", torch_dtype="auto", device_map="auto"
|
42 |
+
)
|
43 |
+
|
44 |
+
# Recommended acceleration for performance optimization
|
45 |
+
# model = Qwen2VLForConditionalGeneration.from_pretrained(
|
46 |
+
# "prithivMLmods/JSONify-Flux",
|
47 |
+
# torch_dtype=torch.bfloat16,
|
48 |
+
# attn_implementation="flash_attention_2",
|
49 |
+
# device_map="auto",
|
50 |
+
# )
|
51 |
+
|
52 |
+
# Default processor
|
53 |
+
processor = AutoProcessor.from_pretrained("prithivMLmods/JSONify-Flux")
|
54 |
+
|
55 |
+
messages = [
|
56 |
+
{
|
57 |
+
"role": "user",
|
58 |
+
"content": [
|
59 |
+
{
|
60 |
+
"type": "image",
|
61 |
+
"image": "https://flux-generated.com/sample_image.jpeg",
|
62 |
+
},
|
63 |
+
{"type": "text", "text": "Extract structured information from this image in JSON format."},
|
64 |
+
],
|
65 |
+
}
|
66 |
+
]
|
67 |
+
|
68 |
+
# Prepare for inference
|
69 |
+
text = processor.apply_chat_template(
|
70 |
+
messages, tokenize=False, add_generation_prompt=True
|
71 |
+
)
|
72 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
73 |
+
inputs = processor(
|
74 |
+
text=[text],
|
75 |
+
images=image_inputs,
|
76 |
+
videos=video_inputs,
|
77 |
+
padding=True,
|
78 |
+
return_tensors="pt",
|
79 |
+
)
|
80 |
+
inputs = inputs.to("cuda")
|
81 |
+
|
82 |
+
# Generate output
|
83 |
+
generated_ids = model.generate(**inputs, max_new_tokens=256)
|
84 |
+
generated_ids_trimmed = [
|
85 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
86 |
+
]
|
87 |
+
output_text = processor.batch_decode(
|
88 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
89 |
+
)
|
90 |
+
print(output_text)
|
91 |
+
```
|
92 |
+
|
93 |
+
### JSON Output Example:
|
94 |
+
```json
|
95 |
+
{
|
96 |
+
"image_id": "sample_image.jpeg",
|
97 |
+
"captions": [
|
98 |
+
"A futuristic cityscape with neon lights.",
|
99 |
+
"A digital artwork featuring an abstract environment."
|
100 |
+
],
|
101 |
+
"recognized_text": "Welcome to Flux City!",
|
102 |
+
"metadata": {
|
103 |
+
"color_palette": ["#FF5733", "#33FF57", "#3357FF"],
|
104 |
+
"detected_objects": ["building", "sign", "street light"]
|
105 |
+
}
|
106 |
+
}
|
107 |
+
```
|
108 |
+
|
109 |
+
### **Key Features**
|
110 |
+
|
111 |
+
1. **Flux-Based Training Data**
|
112 |
+
- Trained using **Flux-generated images** and captions to ensure high-quality structured output.
|
113 |
+
|
114 |
+
2. **Optical Character Recognition (OCR)**
|
115 |
+
- Extracts and processes textual content within images.
|
116 |
+
|
117 |
+
3. **Structured JSON Output**
|
118 |
+
- Outputs information in **JSON format** for easy integration with various applications.
|
119 |
+
|
120 |
+
4. **Conversational Capabilities**
|
121 |
+
- Handles **multi-turn interactions** with structured responses.
|
122 |
+
|
123 |
+
5. **Image & Text Processing**
|
124 |
+
- Inputs can include **images, text, or both**, with JSON-formatted results.
|
125 |
+
|
126 |
+
6. **Secure and Optimized Model Weights**
|
127 |
+
- Uses **Safetensors** for enhanced security and efficient model loading.
|