Update README.md
Browse files
README.md
CHANGED
@@ -15,5 +15,89 @@ tags:
|
|
15 |
- finance
|
16 |
---
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
- finance
|
16 |
---
|
17 |
|
18 |
+
|
19 |
+
# **Document-Type-Detection**
|
20 |
+
|
21 |
+
> **Document-Type-Detection** is a multi-class image classification model based on `google/siglip2-base-patch16-224`, trained to detect and classify **types of documents** from scanned or photographed images. This model is helpful for **automated document sorting**, **OCR pipelines**, and **digital archiving systems**.
|
22 |
+
|
23 |
+
---
|
24 |
+
|
25 |
+
## **Label Classes**
|
26 |
+
|
27 |
+
The model classifies images into the following document types:
|
28 |
+
|
29 |
+
```
|
30 |
+
0: Advertisement-Doc
|
31 |
+
1: Hand-Written-Doc
|
32 |
+
2: Invoice-Doc
|
33 |
+
3: Letter-Doc
|
34 |
+
4: News-Article-Doc
|
35 |
+
5: Resume-Doc
|
36 |
+
```
|
37 |
+
|
38 |
+
---
|
39 |
+
|
40 |
+
## **Installation**
|
41 |
+
|
42 |
+
```bash
|
43 |
+
pip install transformers torch pillow gradio
|
44 |
+
```
|
45 |
+
|
46 |
+
---
|
47 |
+
|
48 |
+
## **Example Inference Code**
|
49 |
+
|
50 |
+
```python
|
51 |
+
import gradio as gr
|
52 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
53 |
+
from PIL import Image
|
54 |
+
import torch
|
55 |
+
|
56 |
+
# Load model and processor
|
57 |
+
model_name = "prithivMLmods/Document-Type-Detection"
|
58 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
59 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
60 |
+
|
61 |
+
# ID to label mapping
|
62 |
+
id2label = {
|
63 |
+
"0": "Advertisement-Doc",
|
64 |
+
"1": "Hand-Written-Doc",
|
65 |
+
"2": "Invoice-Doc",
|
66 |
+
"3": "Letter-Doc",
|
67 |
+
"4": "News-Article-Doc",
|
68 |
+
"5": "Resume-Doc"
|
69 |
+
}
|
70 |
+
|
71 |
+
def detect_doc_type(image):
|
72 |
+
image = Image.fromarray(image).convert("RGB")
|
73 |
+
inputs = processor(images=image, return_tensors="pt")
|
74 |
+
|
75 |
+
with torch.no_grad():
|
76 |
+
outputs = model(**inputs)
|
77 |
+
logits = outputs.logits
|
78 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
79 |
+
|
80 |
+
prediction = {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
81 |
+
return prediction
|
82 |
+
|
83 |
+
# Gradio Interface
|
84 |
+
iface = gr.Interface(
|
85 |
+
fn=detect_doc_type,
|
86 |
+
inputs=gr.Image(type="numpy"),
|
87 |
+
outputs=gr.Label(num_top_classes=6, label="Document Type"),
|
88 |
+
title="Document-Type-Detection",
|
89 |
+
description="Upload a document image to classify it as one of: Advertisement, Hand-Written, Invoice, Letter, News Article, or Resume."
|
90 |
+
)
|
91 |
+
|
92 |
+
if __name__ == "__main__":
|
93 |
+
iface.launch()
|
94 |
+
```
|
95 |
+
|
96 |
+
---
|
97 |
+
|
98 |
+
## **Applications**
|
99 |
+
|
100 |
+
* **Automated Document Sorting**
|
101 |
+
* **Digital Libraries and Archives**
|
102 |
+
* **OCR Preprocessing**
|
103 |
+
* **Enterprise Document Management**
|