prithivMLmods commited on
Commit
0422f2d
·
verified ·
1 Parent(s): 9a0e243

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -1
README.md CHANGED
@@ -13,6 +13,10 @@ tags:
13
  - SigLIP2
14
  ---
15
 
 
 
 
 
16
  ```python
17
  Classification Report:
18
  precision recall f1-score support
@@ -23,4 +27,67 @@ High Quality Deepfake 0.8025 0.8500 0.8257 3750
23
  accuracy 0.8185 7500
24
  macro avg 0.8188 0.8185 0.8180 7500
25
  weighted avg 0.8188 0.8185 0.8180 7500
26
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  - SigLIP2
14
  ---
15
 
16
+ # **Deepfake-Quality-Classifier-SigLIP2**
17
+
18
+ > **Deepfake-Quality-Classifier-SigLIP2** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to assess the quality of deepfake images using the **SiglipForImageClassification** architecture.
19
+
20
  ```python
21
  Classification Report:
22
  precision recall f1-score support
 
27
  accuracy 0.8185 7500
28
  macro avg 0.8188 0.8185 0.8180 7500
29
  weighted avg 0.8188 0.8185 0.8180 7500
30
+ ```
31
+
32
+ The model categorizes images into two classes:
33
+ - **Class 0:** "Issue In Deepfake" – indicating that the deepfake image has noticeable flaws or inconsistencies.
34
+ - **Class 1:** "High Quality Deepfake" – indicating that the deepfake image is of high quality and appears more realistic.
35
+
36
+ # **Run with Transformers🤗**
37
+
38
+ ```python
39
+ !pip install -q transformers torch pillow gradio
40
+ ```
41
+
42
+ ```python
43
+ import gradio as gr
44
+ from transformers import AutoImageProcessor
45
+ from transformers import SiglipForImageClassification
46
+ from transformers.image_utils import load_image
47
+ from PIL import Image
48
+ import torch
49
+
50
+ # Load model and processor
51
+ model_name = "prithivMLmods/Deepfake-Quality-Classifier-SigLIP2"
52
+ model = SiglipForImageClassification.from_pretrained(model_name)
53
+ processor = AutoImageProcessor.from_pretrained(model_name)
54
+
55
+ def deepfake_detection(image):
56
+ """Predicts deepfake probability scores for an image."""
57
+ image = Image.fromarray(image).convert("RGB")
58
+ inputs = processor(images=image, return_tensors="pt")
59
+
60
+ with torch.no_grad():
61
+ outputs = model(**inputs)
62
+ logits = outputs.logits
63
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
64
+
65
+ labels = {0: "Issue In Deepfake", 1: "High Quality Deepfake"}
66
+ predictions = {labels[i]: round(probs[i], 3) for i in range(len(probs))}
67
+
68
+ return predictions
69
+
70
+ # Create Gradio interface
71
+ iface = gr.Interface(
72
+ fn=deepfake_detection,
73
+ inputs=gr.Image(type="numpy"),
74
+ outputs=gr.Label(label="Prediction Scores"),
75
+ title="Deepfake Quality Detection",
76
+ description="Upload an image to check its deepfake probability scores."
77
+ )
78
+
79
+ # Launch the app
80
+ if __name__ == "__main__":
81
+ iface.launch()
82
+ ```
83
+
84
+ # **Intended Use:**
85
+
86
+ The **Deepfake-Quality-Classifier-SigLIP2** model is designed to evaluate the quality of deepfake images. It helps distinguish between high-quality deepfakes and those with noticeable issues. Potential use cases include:
87
+
88
+ - **Deepfake Quality Assessment:** Identifying whether a generated deepfake meets high-quality standards or contains artifacts and inconsistencies.
89
+ - **Content Moderation:** Assisting in filtering low-quality deepfake images in digital media platforms.
90
+ - **Forensic Analysis:** Supporting researchers and analysts in assessing the credibility of synthetic images.
91
+ - **Deepfake Model Benchmarking:** Helping developers compare and improve deepfake generation models.
92
+
93
+