Update README.md
Browse files
README.md
CHANGED
@@ -2,6 +2,9 @@
|
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
|
|
|
|
|
|
|
5 |
```py
|
6 |
Classification Report:
|
7 |
precision recall f1-score support
|
@@ -38,3 +41,92 @@ Classification Report:
|
|
38 |
weighted avg 0.9996 0.9996 0.9996 121769
|
39 |
```
|
40 |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
|
5 |
+
# **Alphabet-Sign-Language-Detection**
|
6 |
+
> **Alphabet-Sign-Language-Detection** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify images into **sign language alphabet** categories using the **SiglipForImageClassification** architecture.
|
7 |
+
|
8 |
```py
|
9 |
Classification Report:
|
10 |
precision recall f1-score support
|
|
|
41 |
weighted avg 0.9996 0.9996 0.9996 121769
|
42 |
```
|
43 |

|
44 |
+
|
45 |
+
The model categorizes images into the following 26 classes:
|
46 |
+
- **Class 0:** "A"
|
47 |
+
- **Class 1:** "B"
|
48 |
+
- **Class 2:** "C"
|
49 |
+
- **Class 3:** "D"
|
50 |
+
- **Class 4:** "E"
|
51 |
+
- **Class 5:** "F"
|
52 |
+
- **Class 6:** "G"
|
53 |
+
- **Class 7:** "H"
|
54 |
+
- **Class 8:** "I"
|
55 |
+
- **Class 9:** "J"
|
56 |
+
- **Class 10:** "K"
|
57 |
+
- **Class 11:** "L"
|
58 |
+
- **Class 12:** "M"
|
59 |
+
- **Class 13:** "N"
|
60 |
+
- **Class 14:** "O"
|
61 |
+
- **Class 15:** "P"
|
62 |
+
- **Class 16:** "Q"
|
63 |
+
- **Class 17:** "R"
|
64 |
+
- **Class 18:** "S"
|
65 |
+
- **Class 19:** "T"
|
66 |
+
- **Class 20:** "U"
|
67 |
+
- **Class 21:** "V"
|
68 |
+
- **Class 22:** "W"
|
69 |
+
- **Class 23:** "X"
|
70 |
+
- **Class 24:** "Y"
|
71 |
+
- **Class 25:** "Z"
|
72 |
+
|
73 |
+
# **Run with Transformers🤗**
|
74 |
+
|
75 |
+
```python
|
76 |
+
!pip install -q transformers torch pillow gradio
|
77 |
+
```
|
78 |
+
|
79 |
+
```python
|
80 |
+
import gradio as gr
|
81 |
+
from transformers import AutoImageProcessor
|
82 |
+
from transformers import SiglipForImageClassification
|
83 |
+
from transformers.image_utils import load_image
|
84 |
+
from PIL import Image
|
85 |
+
import torch
|
86 |
+
|
87 |
+
# Load model and processor
|
88 |
+
model_name = "prithivMLmods/Alphabet-Sign-Language-Detection"
|
89 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
90 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
91 |
+
|
92 |
+
def sign_language_classification(image):
|
93 |
+
"""Predicts sign language alphabet category for an image."""
|
94 |
+
image = Image.fromarray(image).convert("RGB")
|
95 |
+
inputs = processor(images=image, return_tensors="pt")
|
96 |
+
|
97 |
+
with torch.no_grad():
|
98 |
+
outputs = model(**inputs)
|
99 |
+
logits = outputs.logits
|
100 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
101 |
+
|
102 |
+
labels = {
|
103 |
+
"0": "A", "1": "B", "2": "C", "3": "D", "4": "E", "5": "F", "6": "G", "7": "H", "8": "I", "9": "J",
|
104 |
+
"10": "K", "11": "L", "12": "M", "13": "N", "14": "O", "15": "P", "16": "Q", "17": "R", "18": "S", "19": "T",
|
105 |
+
"20": "U", "21": "V", "22": "W", "23": "X", "24": "Y", "25": "Z"
|
106 |
+
}
|
107 |
+
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
108 |
+
|
109 |
+
return predictions
|
110 |
+
|
111 |
+
# Create Gradio interface
|
112 |
+
iface = gr.Interface(
|
113 |
+
fn=sign_language_classification,
|
114 |
+
inputs=gr.Image(type="numpy"),
|
115 |
+
outputs=gr.Label(label="Prediction Scores"),
|
116 |
+
title="Alphabet Sign Language Detection",
|
117 |
+
description="Upload an image to classify it into one of the 26 sign language alphabet categories."
|
118 |
+
)
|
119 |
+
|
120 |
+
# Launch the app
|
121 |
+
if __name__ == "__main__":
|
122 |
+
iface.launch()
|
123 |
+
```
|
124 |
+
|
125 |
+
# **Intended Use:**
|
126 |
+
|
127 |
+
The **Alphabet-Sign-Language-Detection** model is designed for sign language image classification. It helps categorize images of hand signs into predefined alphabet categories. Potential use cases include:
|
128 |
+
|
129 |
+
- **Sign Language Education:** Assisting learners in recognizing and practicing sign language alphabets.
|
130 |
+
- **Accessibility Enhancement:** Supporting applications that improve communication for the hearing impaired.
|
131 |
+
- **AI Research:** Advancing computer vision models in sign language recognition.
|
132 |
+
- **Gesture Recognition Systems:** Enabling interactive applications with real-time sign language detection.
|