pritamdeka commited on
Commit
d89167d
·
1 Parent(s): 790803c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -2
README.md CHANGED
@@ -14,7 +14,7 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  # best_model
16
 
17
- This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
  - Loss: 0.2833
20
  - Accuracy: 0.8942
@@ -25,7 +25,32 @@ More information needed
25
 
26
  ## Intended uses & limitations
27
 
28
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
  ## Training and evaluation data
31
 
 
14
 
15
  # best_model
16
 
17
+ This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the [PubMed200kRCT](https://github.com/Franck-Dernoncourt/pubmed-rct/tree/master/PubMed_200k_RCT) dataset.
18
  It achieves the following results on the evaluation set:
19
  - Loss: 0.2833
20
  - Accuracy: 0.8942
 
25
 
26
  ## Intended uses & limitations
27
 
28
+ The model can be used for text classification tasks of Randomized Controlled Trials that does not have any structure. The text can be classified as one of the following:
29
+ * BACKGROUND
30
+ * CONCLUSIONS
31
+ * METHODS
32
+ * OBJECTIVE
33
+ * RESULTS
34
+
35
+ The model can be directly used like this:
36
+
37
+ ```python
38
+ from transformers import TextClassificationPipeline
39
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
40
+ model = AutoModelForSequenceClassification.from_pretrained("pritamdeka/PubMedBert-PubMed200kRCT")
41
+ tokenizer = AutoTokenizer.from_pretrained("pritamdeka/PubMedBert-PubMed200kRCT")
42
+ pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
43
+ pipe("Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity.")
44
+ ```
45
+ Results will be shown as follows:
46
+
47
+ ```python
48
+ [[{'label': 'BACKGROUND', 'score': 0.0026365036610513926},
49
+ {'label': 'CONCLUSIONS', 'score': 0.052317846566438675},
50
+ {'label': 'METHODS', 'score': 0.007398751098662615},
51
+ {'label': 'OBJECTIVE', 'score': 0.0008019638480618596},
52
+ {'label': 'RESULTS', 'score': 0.9368449449539185}]]
53
+ ```
54
 
55
  ## Training and evaluation data
56