Commit
·
f042213
1
Parent(s):
d807c75
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
base_model: MCG-NJU/videomae-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: videomae-base-finetuned-ucf101-subset
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# videomae-base-finetuned-ucf101-subset
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.0480
|
21 |
+
- Accuracy: 0.9857
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 5e-05
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_ratio: 0.1
|
47 |
+
- training_steps: 600
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
53 |
+
| 2.2995 | 0.06 | 38 | 2.1143 | 0.3 |
|
54 |
+
| 1.6428 | 1.06 | 76 | 1.5030 | 0.3429 |
|
55 |
+
| 0.6261 | 2.06 | 114 | 0.8121 | 0.6286 |
|
56 |
+
| 0.4044 | 3.06 | 152 | 0.4910 | 0.7714 |
|
57 |
+
| 0.3236 | 4.06 | 190 | 0.4558 | 0.8714 |
|
58 |
+
| 0.1865 | 5.06 | 228 | 0.6773 | 0.8 |
|
59 |
+
| 0.1479 | 6.06 | 266 | 0.1813 | 0.9571 |
|
60 |
+
| 0.0418 | 7.06 | 304 | 0.1312 | 0.9714 |
|
61 |
+
| 0.0718 | 8.06 | 342 | 0.2473 | 0.9286 |
|
62 |
+
| 0.0596 | 9.06 | 380 | 0.1378 | 0.9714 |
|
63 |
+
| 0.0079 | 10.06 | 418 | 0.0308 | 0.9857 |
|
64 |
+
| 0.0134 | 11.06 | 456 | 0.0329 | 1.0 |
|
65 |
+
| 0.0083 | 12.06 | 494 | 0.0310 | 1.0 |
|
66 |
+
| 0.0394 | 13.06 | 532 | 0.0543 | 0.9714 |
|
67 |
+
| 0.004 | 14.06 | 570 | 0.0492 | 0.9857 |
|
68 |
+
| 0.0043 | 15.05 | 600 | 0.0480 | 0.9857 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.31.0
|
74 |
+
- Pytorch 1.10.0+cu113
|
75 |
+
- Datasets 2.14.4
|
76 |
+
- Tokenizers 0.13.3
|