from safetensors.torch import load_file, save_file import torch torch.cuda.empty_cache() import torch.nn.functional as F from tqdm import tqdm # Ensure tqdm is installed def load_model(file_path): return load_file(file_path) def save_model(merged_model, output_file): print(f"Saving merged model to {output_file}") save_file(merged_model, output_file) def resize_tensor_shapes(tensor1, tensor2): if tensor1.size() == tensor2.size(): return tensor1, tensor2 max_shape = [max(s1, s2) for s1, s2 in zip(tensor1.shape, tensor2.shape)] tensor1_resized = F.pad(tensor1, (0, max_shape[-1] - tensor1.size(-1))) tensor2_resized = F.pad(tensor2, (0, max_shape[-1] - tensor2.size(-1))) return tensor1_resized, tensor2_resized def merge_checkpoints(ckpt1, ckpt2, blend_ratio=0.5): print(f"Merging checkpoints with blend ratio: {blend_ratio}") merged = {} all_keys = set(ckpt1.keys()).union(set(ckpt2.keys())) for key in tqdm(all_keys, desc="Merging Checkpoints", unit="layer"): t1, t2 = ckpt1.get(key), ckpt2.get(key) if t1 is not None and t2 is not None: t1, t2 = resize_tensor_shapes(t1, t2) merged[key] = blend_ratio * t1 + (1 - blend_ratio) * t2 elif t1 is not None: merged[key] = t1 else: merged[key] = t2 return merged if __name__ == "__main__": try: model1_path = "flux1-dev.safetensors.1" model2_path = "brainflux_v10.safetensors" blend_ratio = 0.4 output_file = "output_checkpoint.safetensors" model1 = load_model(model1_path) model2 = load_model(model2_path) merged_model = merge_checkpoints(model1, model2, blend_ratio) save_model(merged_model, output_file) except Exception as e: print(f"An error occurred: {e}")