File size: 1,562 Bytes
d975336 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---
# rag-topic-model
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
## Usage
To use this model, please install BERTopic:
```
pip install -U bertopic
```
You can use the model as follows:
```python
from bertopic import BERTopic
topic_model = BERTopic.load("ppuva1/rag-topic-model")
topic_model.get_topic_info()
```
## Topic overview
* Number of topics: 3
* Number of training documents: 201
<details>
<summary>Click here for an overview of all topics.</summary>
| Topic ID | Topic Keywords | Topic Frequency | Label |
|----------|----------------|-----------------|-------|
| -1 | charge - on - account - seeing - random | 75 | -1_charge_on_account_seeing |
| 0 | my - to - klarna - the - it | 7 | 0_my_to_klarna_the |
| 1 | refund - my - nike - for - store | 119 | 1_refund_my_nike_for |
</details>
## Training hyperparameters
* calculate_probabilities: False
* language: None
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: None
* seed_topic_list: None
* top_n_words: 10
* verbose: False
* zeroshot_min_similarity: 0.7
* zeroshot_topic_list: None
## Framework versions
* Numpy: 2.0.2
* HDBSCAN: 0.8.40
* UMAP: 0.5.7
* Pandas: 2.2.3
* Scikit-Learn: 1.6.1
* Sentence-transformers: 3.4.1
* Transformers: 4.48.2
* Numba: 0.60.0
* Plotly: 6.0.0
* Python: 3.9.21
|