--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert_uncased_L-12_H-128_A-2-mlm-multi-emails-hq-r2 results: [] widget: - text: Can you please send me the [MASK] by the end of the day? example_title: end of day - text: >- I hope this email finds you well. I wanted to follow up on our [MASK] yesterday. example_title: follow-up - text: The meeting has been rescheduled to [MASK]. example_title: reschedule - text: Please let me know if you need any further [MASK] regarding the project. example_title: further help - text: >- I appreciate your prompt response to my previous email. Can you provide an update on the [MASK] by tomorrow? example_title: provide update - text: Paris is the [MASK] of France. example_title: paris (default) - text: The goal of life is [MASK]. example_title: goal of life (default) --- # bert_uncased_L-12_H-128_A-2-mlm-multi-emails-hq This model is a fine-tuned version of [google/bert_uncased_L-12_H-128_A-2](https://huggingface.co/google/bert_uncased_L-12_H-128_A-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4235 - Accuracy: 0.5780 ## Model description This is a **40 MB version of BERT** that does surprisingly well! ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 8.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.9421 | 0.99 | 141 | 2.7769 | 0.5330 | | 2.772 | 1.99 | 282 | 2.6669 | 0.5487 | | 2.6997 | 2.99 | 423 | 2.5486 | 0.5621 | | 2.6281 | 3.99 | 564 | 2.4865 | 0.5704 | | 2.5626 | 4.99 | 705 | 2.4385 | 0.5766 | | 2.5504 | 5.99 | 846 | 2.4421 | 0.5772 | | 2.5434 | 6.99 | 987 | 2.4094 | 0.5818 | | 2.5174 | 7.99 | 1128 | 2.4235 | 0.5780 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 2.0.0.dev20230129+cu118 - Datasets 2.8.0 - Tokenizers 0.13.1